
Zed3D
A compact reference for 3d computer

graphics programming

by Sébastien Loisel
Ó 1994, 1995, 1996



Zed3D - A compact reference for 3d 
computer graphics programming

Copyright 1994, 1995, 1996 by Sébastien Loisel All Rights
Reserved, version 0.95b

Zed3D is a document about computer graphics,  more particularly real-time 3d
graphics. This document should be viewed as a practical reference for a first and
perhaps second course in computer graphics.

The original Zed3D document grew out of my work notes. As a matter of fact,
the original Zed3D, up to version 0.61beta, was my work notes. As such, it was
messy, incomplete and often incorrect. I have attempted to correct this a bit now.
I still consider these my work notes, but I have added more formal introductory
material which was not in the original document.

In this document, I will attempt to describe various aspects of computer graphics
in a clear, useful and complete fashion. You will find quite a bit of the theoretical
aspects, copies of the calculations and proofs I made and so forth.

2



However, there is the painful fact that I am merely a student, trying to mark my
territory in the university work, and since this work does not serve that purpose
very well, Zed3D will oftentimes be lacking in areas that I wish I had more time
to document.  Also,  I  will  attempt  to  distribute  another  nice portable  graphics
engine in the future, but that's only if I can find the time to make it.

Also,  please  note  that  this  document  and  any  accompanying
documentation/software  for  which  I  am  the  author  should  not  be  considered
public domain.  You can redistribute this whole thing,  unmodified,  if no fee is
charged for it, otherwise you need the author's written permission. Also I am not
responsible for anything that might happen anywhere even if it's related directly
or indirectly to this package. If you wish to encourage my effort, feel free to send
me a 10$ check,  which will  be considered  to  be your  official  registration.  If
you're really on a budget,  I  would appreciate  at  least a postcard.  At any rate,
please read the registration paragraph below. There have been rumours about a
0.70 version of Zed3D about. This would be a fake, versions between 0.63 and
0.79 do not exist, and have never existed.

Contact information

If you wish to contact me for any reason, you should be using the following snail-
mail  address or my e-mail  address. Given that snail-mail  addresses tend to be
more  stable  over  time,  you  might  try  it  if  I  don't  answer  to  your  electronic
messages.

E-Mail Address: zed@cs.mcgill.ca

Snail Mail Address:
For the 1995-1996 school year, I will reside at:

Sébastien Loisel
3436 Aylmer Street, apartment 2
Montréal, Québec, Canada
Postal Code: H2X 2B6

Otherwise, it is possible to reach me at:

Sébastien Loisel
1 J.K. Laflamme
Lévis, Québec, Canada
Postal Code: G6V 3R1

Registration

3



If you want to register your copy of Zed3D for life, and be able to use the source
in any way you want,  even commercial  (though commercial  utilization of  the
documentation [this file] still requires the written permission of the author), you
can send me a cheque of US$10.00. For more information, please consult the file
register.frm, which should have come with this document. If you are experiencing
difficulties with registration or if the file register.frm is missing, please mail me
and we will work something out.

Overview

I am trying to put a bit more structure into this document. As such, this is how it
is meant to be structured at this moment.

The first section is heavily mathematical. It deals with transformations by and at
large. First are discussed linear and affine transformations, which are used to spin
and move stuff in space in a useful fashion, then is discussed and justified the
perspective transforms. These two sections are very theoretical, but are required
for proper understanding of the later sections.

Then  there  will  follow a  section  dealing  specifically  with  applications  of  the
preceding  theory.  Namely,  rotation  matrices  and  their  inverse  and  object
hierarchy.

The third "section" concerns itself mainly with rendering techniques. These are
becoming  less  and  less  important  for  several  reasons.  The  complexity  of  the
problem is of course not in the rendering section of the pipeline.  Second,  the
recent  trend  has  pushed  the  rendering  part  of  the  pipeline  into  cheap  video
hardware which can do the job fast and effectively while the CPU is off to some
other,  more important  task.  Eventually,  we can hope that transforming objects
will also be made a part of popular low-cost hardware, but that remains to be
seen. As it is now, this is often the job of either the CPU, or sometimes we might
wish to give this job to a better co-processor (for example, a programmable DSP).

Fourthly, an attempt will be made to describe a few shading models and visible
surface determination techniques. Shading models are but loosely related to the
way the polygons are drawn. Visible surface determination depends somewhat
more on the way polygons are drawn, and is often implemented in hardware.

The following section deals with a few of the computer graphics related problems
that  are  often  encountered,  such  as  error  tolerant  normal  computation,  the
problem  of  finding  a  correctly  oriented  normal,  polygon  triangulation  and
quaternions  to  represent  orientations,  which are  especially  useful  in  keyframe
animations.

4



There  is  also  a  short  glossary  and even shorter  bibliography.  [1]  is  a  highly
recommended  reading  to  anyone  intending  to  do  serious  computer  graphics.
There is a lot of overlap between Zed3D and [1], though [1] doubtlessly contains
a great deal more information than this text. However, Zed3D does cover a rare
few topics which are more or less well covered in [1] (example: quaternions).

Of  course,  a  lot  of  topics  remain  to  be  covered,  such  as  real-time  collision
detection, octrees and other data structures. However, I unfortunately do not have
the time to write all of that down for the general public.

5



Table of Contents

Zed3D - A compact reference for 3d computer graphics 
programming............................................................................

Contact information...........................................................................
Registration........................................................................................

Overview........................................................................................................

Table of Contents.....................................................................

Vector mathematics..................................................................
Introduction....................................................................................................

On notation........................................................................................
Vector operations...........................................................................................

Exercises............................................................................................
Answers..............................................................................................

Alcoholism and dependance..........................................................................
Exercises............................................................................................
Answers..............................................................................................

On a plane (and of motion sickness)..............................................................
Exercises............................................................................................
Answers..............................................................................................

Orthonormalizing a basis...............................................................................

Matrix mathematics..................................................................
Introduction....................................................................................................
Matrix operations...........................................................................................

Exercise..............................................................................................
Answer...............................................................................................

Matrix representation & linear transformations............................................

Affine transforms......................................................................
Introduction....................................................................................................

6



Affine transformations...................................................................................
Exercise..............................................................................................

Affine transform combination and inversion.................................................
Exercise..............................................................................................
Answer...............................................................................................

Applications of linear transformations.....................................
Introduction....................................................................................................
World space, eye space, object space, outer space........................................
Transformations in the hierarchy (or the French revolution)........................
Some pathological matrices...........................................................................

Perspective................................................................................
Introduction....................................................................................................
A simple perspectively incorrect projection..................................................
The perspective transformation.....................................................................
Theorems........................................................................................................
Other applications..........................................................................................

Constant Z..........................................................................................
Texture mapping equations revisited.................................................
Bla bla................................................................................................

Reality strikes.................................................................................................

Interpolations and approximations...........................................
Introduction....................................................................................................
Forward differencing.....................................................................................
Approximation function.................................................................................

Polynomial Splines...................................................................
Introduction....................................................................................................
Basic splines...................................................................................................
Parametrized splines......................................................................................
Uniform splines..............................................................................................
Examples........................................................................................................
Frequently used uniform cubic splines..........................................................

Hermite splines..................................................................................
Bézier splines.....................................................................................
Convex hull........................................................................................
Bernstein polynomials.......................................................................
Uniform nonrational B-spline............................................................

7



Catmull-Rom splines: a non-uniform type of spline.....................................

Rendering..................................................................................
Introduction....................................................................................................
The point........................................................................................................
Lines...............................................................................................................
Polygon drawing............................................................................................

Visible surface determination...................................................
Introduction....................................................................................................
Back-face culling...........................................................................................
Sorting............................................................................................................
Painter's algorithm and depth sorting............................................................
Z-Buffering....................................................................................................
Binary Space Partitioning..............................................................................

Lighting models........................................................................
Introduction....................................................................................................
Lighting models.............................................................................................
Smooth shading..............................................................................................
Texture mapping & variants on the same theme...........................................

Computer graphics related problems.......................................
Introduction....................................................................................................
Generating edge normals...............................................................................
Triangulating a polygon.................................................................................
Computing a plane normal from vertices......................................................
Generating correctly oriented normals for polyhedra....................................
Polygon clipping against a line or plane........................................................

Quaternions...............................................................................
Introduction....................................................................................................
Preliminaries..................................................................................................
Conversion between quaternions and matrices..............................................
Orientation interpolation................................................................................

Antialiasing...............................................................................

8



Introduction....................................................................................................
Filtering..........................................................................................................
Pixel accuracy................................................................................................
Sub-pixel accuracy.........................................................................................
Time antialiasing, a.k.a. motion blur.............................................................
Mipmapping...................................................................................................

Uniform Mipmapping........................................................................
Nonuniform Mipmapping..................................................................
Summed area tables...........................................................................

Bi-linear interpolation....................................................................................
Tri-linear interpolation...................................................................................

Glossary....................................................................................

Bibliography.............................................................................

9



Vector mathematics

Introduction

Linear algebra is a rather broad yet basic field of college level mathematics. It is
being taught (or should be at any rate) early on to students in mathematics and
engineering. However simple it is, it's a lengthy topic to discuss. And since this
document is not meant as a mathematics textbook, I will only give here the gist of
the thing.

If you need further information on the topic, browse your local library for linear
algebra books and somesuch, or go ask a professor. As of now, I'm not making
any bibliography for  this,  but  if  and when I  do,  I'll  try  to  give a few decent
references.

The purpose of linear  algebra in 3d graphics is to implement  all  the rotation,
skewing, translation, changes in coordinates, and otherwise affine transformations
to 3d object. The applications range from merely rotating an object about its own
system of axis to object hierarchy, moving cameras and can be extended through
quaternions for rotation interpolation and such.

As such, linear algebra is something that is essential for any 3d graphics engine to
be useful.

Since  my  prime  concern  is  3d  graphics,  I  will  give  only  whatever  theory  is
absolutely necessary for that topic. What's below extends in a vary natural way to
n dimensions, n>3, except for cross product, which is a bit awkward.

On notation

I will frequently use the sigma symbol for sums, for example, something like this:

å0£i£nai

which stands for

a0+a1+a2+a3+...+an.

More generally, the notation

10



åiÎIai

stands for “sum of all ai for all i in I”. This notation will not be used frequently in
this work. Notation from more advanced math might be used especially in proofs.

Vector operations

A vector in 3d is noted (a,b,c) where a, b and c are real numbers. Similarly, a
vector  in  2d is  noted  (a,b) for  a,  b  real  numbers.  The  vector  for  which  all
components are null deserves a special mention, it  is usually noted  0, with the
proper number of components implied in the notation but not explicitly given.

A vector should be thought of as an oriented line segment from the origin (0) to a
point  P in space.  Let's  take a 2d example (this  is also valid  for  3d or  higher
dimension). The vector V=(1,2) can be represented as an oriented segment from
(0,0) to P=(1,2), as can be seen below. A vector should always be pictured as an
arrow from 0 to the point P. Using this model, we can think of a vector from
P1=(a,b) to P2=(c,d) as the vector from (P1-P1) to (P2-P1), or from (0,0) to (c-
a,d-b). This illustrates a very important point. The vector from P1 to P2 is the
exact same vector as the vector from 0 to P2-P1. Two vectors that differ only by a
translation are considered equivalent.

1

2

Y

X

1 2

P=(1,2)

(0,0)

V

Vector addition is defined as follows. Let U=(u1,u2,u3) and V=(v1,v2,v3) then
the  notation  U+V means  (u1+v1,u2+v2,u3+v3).  Similarly,  for  2d  vectors,
(u1,u2)+(v1,v2) means (u1+v1,u2+v2).

Multiplication of a vector by a scalar is defined as follow. Given vector U and
a scalar a (a is a real number), then a´U means (a´u1,a´u2,a´u3).

Multiplication by the scalar -1 has a special notation. -1´U is written simply -U.

Vector  difference is  defined  from the  above.  U-V can  be rewritten  U+-1*V,
which is a simple addition and a multiplication by the scalar -1 as above.

11



Multiplication of two vectors has no intuitive meaning. However, two types of
"multiplications" of vectors are usually defined, which have little relation to the
usual real number multiplication.

The first is dot product. U dot V (usually noted U·V) yields a real number (not a
vector).  (u1,u2,u3)·(v1,v2,v3)  means  u1´v1+u2´v2+u3´v3.  Similarly  for  2d
vectors,  (u1,u2)·(v1,v2)ºu1´v1+u2´v2. Note that the 1d case corresponds to
normal multiplication of real numbers in a certain way.

Vectors have a  length, defined as follow. The length (or  module, or  norm) of
vector U is written |U| and has the value of (U·U)1/2. If the length of a vector is
one,  the  vector  is  said  to  be  of  unit  length,  or  a  unit  or  normal  vector.
Multiplying a vector V by the scalar 1/|V| is called normalizing a vector, because
it has the effect of making V a unit vector. In the 1d case, length simplifies to
absolute value, thus the notation |U|.

Dot product is also used to  define angle.  U·V=|U|´|V|´Cosq,  where  q is the
angle between U and V. Incidentally, if |U|=1 then this simplifies to |V|´Cosq,
which is the length of the projection of V onto U. It is of note that U·V is 0 if
and only if either q is p/2+2kp or |U|=0 or |V|=0. Assuming |U| and |V| are not 0,
this means that if U·V is 0, then U and V are perpendicular, or orthogonal.

The second product usually defined on vectors is the  cross product. U cross V
(usually  noted  U´V)  is  defined  using  matrix  determinant  and  somesuch.
Basically, (u1,u2,u3)´(v1,v2,v3) is (u2v3-u3v2, u3v1-u1v3, u1v2-u2v1).

It is demonstrable that the cross product of two vectors is perpendicular to the two
vectors  and  has  a  length  of  |U||V|Sinq.  The  fact  that  it  is  perpendicular  has
applications which we will see later.

Exercises

Q1 - Do the following vector operations:

a) (1,3,2)+(3,5,6)

b) 1.5´(3,4,2)

c) (-1,3,0)·(2,5,2)

d) |(3,4,20/3)|

e) U·V where |U|=2, |V|=3 and the angle between U and V is 60 degrees

f) (1,2,3)´(4,5,6)

Q2 - Which vectors satisfy the equation U·(1,1,1)=0?

12



Answers

A1 - a) (4,8,8)

b) (4.5,6,3)

c) 13

d) 25/3

e) 3

f) (-3,6,-3)

A2 - All vectors that satisfy u1+u2+u3=0. Since the dot product is 0, this means
all vectors that are perpendicular to U. Incidentally, these vectors cover the whole
plane and nothing but the plane for which the normal is (1,1,1). All the vectors of
the said plane can be expressed as p(1,-1,0)+r(0,-1,1) [for example] for some real
numbers p and r. This last notation is also known as a local coordinates system
for the u1+u2+u3=0 plane.

Alcoholism and dependance

Given a set of vector U0, U1, U2, ... , Un, these vectors are said to be linearly
independent if and only if the following is true:

a0´U0+a1´U1+...+an´Un=0 implies that (a0,a1,a2, ... , an)=0.

If there exists at least one solution for which (a0, a1, a2, ...,an) is not zero, then
there exists an infinity of them, and the vector are said to be linearly dependant.

The geometric interpretation of that is as follows. In 3d, three vectors are linearly
independent if none of them are colinear and all three of them are not coplanar.
(Colinear means on the same line, coplanar means on the same plane). Any more
than 3 vectors in 3d and they are certain to be linearly dependant.

For two vectors, in 2d or 3d, they are said to be linearly independent if they are
not colinear. 3 or more vectors in 2d are always linearly dependant.

If  a  set  of  vectors  are  linearly  independent,  they are  said to  form a  basis.  2
linearly  independent  vectors  form  the  basis  for  a  plane,  and  3  linearly
independent vectors form the basis for a 3d space.

13



The term orthogonal is very frequently used to describe perpendicular vectors.
If a basis is made of orthogonal unit vectors (unit vectors are vectors of norm 1),
the base is said to be orthonormal. Orthonormal basis are the most useful kind in
typical 3d graphics. If a basis is not orthonormal, it "skews" the space, where if
the vectors are not unit, it "stretches" and/or "compresses" the space.

Each space has a so-called canonical basis, the basis we intuitively find simplest.
For  3d  space,  that  basis  is  made  of  the  vectors  (1,0,0),  (0,1,0) and  (0,0,1).
Similarly, the canonical basis for 2d space is (1,0) and (0,1). Note that since a
basis is a set of vectors, it would be more formal to enclose the list of vectors in
curly braces, for example, {(2,3) , (-1,0)}.

The vectors of the canonical basis are traditionally noted i, j and k for 3d space or
i and j for 2d space. This leads us to introduce another notation.

If vector (a,b,c) is said to be expressed in basis pqr, then it means that the vector
is a´p+b´q+c´r. Note that a, b and c are scalars and p, q and r are vectors, thus
this  combination  (formally  referred  to  as  linear  combination)  is  defined  as
discussed  earlier.  If  pqr  are  ijk,  this  translates  to  a´i+b´j+c´k  or
(a,0,0)+(0,b,0)+(0,0,c) or (a,b,c).

However, if pqr is not ijk, the matter is different. For example (assuming pqr is
expressed in  ijk  space),  if  p=(1,1,0),  q=(0,1,1)  and r=(1,0,1),  then  the  vector
(a,b,c)  in  pqr  space  means  (a,a,0)+(0,b,b)+(c,0,c)=(a+c,a+b,b+c)  in  ijk  space.
What we just did is called a change of basis. We took a vector that was expressed
in pqr space and expressed it in ijk space.

Note: normally, to specify which space a vector is expressed in, we should write
the space in subscript. Example: as in the preceding paragraph, (a,b,c) is written
either (a,b,c)pqr or (a+c,a+b,b+c)ijk depending on whether we want it in pqr or ijk
space. This notation will help avoid many mistakes.

It would be possible for pqr to be expressed in some other base than the canonical
base. If that were the case, and if the objective would be to express vector (a,b,c)
in ijk space, then it might require several transformations to get there.

For simplicity's sake in the further parts of this document,  we will extend our
definition  of  vectors  to  allow for  not  only  real  number  components,  but  also
vector  components.  This means that  (a,b,c)pqr expressed in pqr  space (a´p+b
´q+c´r) can be written as (a,b,c)pqr·(p,q,r)ijk.

Exercises

Q1 - Are the vectors (1,2,0), (4,2,4) and (-7,-4,-8) linearly independent?

14



Q2 - Say vector U=(1,3,2)pqr is expressed in pqr space, where pqr expressed in ijk
space is (1,2,0)ijk, (2,0,2)ijk, (0,-1,-1)ijk. Express U in ijk space.

Q3 - Using Question 2's values for p, q and r, and the vector V expressed in ijk
space as (1,1,1), can you express V in pqr space?

Answers

A1 - No

A2 - (7,0,4)ijk

A3 - (1/3, 1/3, -1/3) - this exercise is in fact called an inverse transform, which
will be described later.

On a plane (and of motion sickness)

There are several ways to define a plane in 3d. The first one I will present is
useful because it can be used to represent a plane in n dimensional space, even for
n>3.

First you need two linearly independent vectors to form a basis. Call them U and
V. Then, if you take a´U+b´V for all possible values of a and b (them being
real numbers of course), you generate a whole plane that goes through the origin
of space. If you want to displace that plane in space by vector W (e.g. you want
the point  pointed to  by W to be part  of  the plane),  then  a´U+b´V+W will
generate the desired plane. (Proof, for a=b=0, it simplifies to W, thus the point at
W is part of the plane).

Note that the above equation can be written  (a,b)·(U,V)+W. As such it can be
viewed as a change of basis, from the canonical basis of 2d space to whatever
space U and V's basis is.

Another way for defining a plane that only works in 3d is as follows. (Note, in n
dimensional space, this will define a n-1 dimensional object). As was seen earlier,
if A·X=0, then A and X are perpendicular (A and X are vectors). Furthermore,
for a given A, if you take all X's that satisfy the equation, you get all points in a
certain plane. A is generally called normal to the plane, although the literature
frequently assumes that the normal is also of unit length, which is not necessary
(though A must not be the null vector). The values of X that satisfy the plane
equation given include X=0, since A·0=0 for any value of A. Thus, that plane
passes through the origin.

15



If one wants a plane that does not pass through the origin, one should proceed as
follows. (This uses an intuitive form of affine transformations, described in depth
later). First, find out the displacement vector K that describes the position of the
plane in relation to the origin. Thus, if you subtract K from all the points in the
plane, the plane ends up at the origin, and we can use the definition above. Thus,
the new definition of the plane is A·(X-K)=0.

To make this a bit more explicit, let A=(A,B,C) and X=(x,y,z) and K=(k1,k2,k3).
Then the plane equation can be rewritten as: A´(x-k1)+B´(y-k2)+C´(z-k3)=0.
A little algebra allows us to rewrite it as A´x+B´y+C´z=-A´k1-B´k2-C´k3.
By setting D=-A´k1-B´k2-C´k3, we can make one more rewrite, which is the
final form: A´x+B´y+C´z=D.

It  is  important  to  remember  that  multiplying  both  side  of  the  equation  by  a
constant does not change the plane. Thus, plane x+y+z=1 is the same as plane
2x+2y+2z=2.

Note that in this last representation, (A,B,C) is the normal vector to the plane.
The  last  equation  can  also  be  re-written  A·X=D.  It  would  also  be  easy  to
demonstrate the following, but I will not do it. For any point P, (A·P-D)/|A| is the
signed distance to the plane A·X=D. The sign can help you determine on what
side of the plane that the point P lies on.  If  it  is 0,  P is on the plane.  If  it  is
positive, P is in the direction that the normal points to. If it is negative, P is on the
side opposite of the normal. This has application in visible surface determination
(namely, back face culling).

Also note that if |A|=1, then the signed distance equation simplifies to A·P-D.

It is easy to demonstrate that the equation for a line in n-space, for any integer
value of n>0, is t´U+W, where U is a vector parallel to the line and W is a point
on the line. As t takes all real values, we generate a line.

Exercises

Q1 - Given the basis U=(1,3,2) and V=(2,2,2), and the position vector W=(1,1,0),
find the position in 3d space of the point (3,2) in UV space.

Q2 - Express the plane described in Q1 in the form Ax+By+Cz=D

Q3 - Find the signed distance of point (4,2,4) to the plane using the answer for
question 2.

Q4 - Given two basis vectors for a plane, P and Q, in 3d space, and a position
vector for the plane, R, plus the direction vector of a line, M, that passes through
origin, find the pq space point of intersection between the line and the plane.

16



Answers

A1 - (8,14,10)

A2  -  x+y-2z=2  (hint  :  remember  that  the  cross  product  of  U  and  V  is
perpendicular to both U and V).

A3  -  -4/(61/2)@-1.633  -  this  means  that  the  point  (4,2,4)  is  in  the  direction
opposite of (1,1,-2) from the plane x+2-2z=2.

A4 - See the perspective chapter on texture mapping.

Orthonormalizing a basis

Sometimes we might have a basis B which is meant to be orthonormal, but due to
accumulation in roundoff error in the computer, the vectors are slightly off the
unit length and not quite perpendicular. Then it is useful to have a way of finding
an orthonormal basis O from our basis B while making sure that O and B are
"very similar" in a certain sense.

The meaning of "very similar" can be made explicit easily. Let B be the basis (b1,
b2, ..., bn) for a n-dimensional space (bi's are vectors). Let O be the basis (o1, o2,
..., on). Then, we measure the "similitude" of O and B by taking Max(|oi-bi|), that
is, the greatest difference between the same vector in O and B. The closer this
number is to 0,  the more similar  O and B are.  The method given below will
generate O from B such that the similitude is small enough (note that it will not
necessarily be the smallest possible, it will simply be small enough).

The process in n-dimensional space is as follows. Let

v1=b1

vn=bn-å1£i<n(bn·oi)oi

on=vn/|vn|

Then, the basis O is orthonormal and has good similitude with the basis B. (Proof
is left as an exercise. Hint: find an upper bound on the similitude as a function of
the maximum of the dot product between two vectors of the basis B and as a
function of the length of the vectors in the basis B. Proof of orthogonality comes
from examining vn closely. Unit norm of the vectors of the basis is obvious.)

Explicitly for the 3d case, this simplifies to:

17



o1=b1/|b1|

v2=b2-(b2·o1)o1

o2=v2/|v2|

v3=b3-(b3·o1)o1-(b3·o2)o2

o3=v3/|v3|

18



Matrix mathematics

Introduction

Matrices are  a  tool  used  to  handle  a  great  deal  of  linear  combinations  in  a
homogeneous way. The operations on matrices are so defined as to ease whatever
task you want to do with them. Be it expressing a system of equations, or making
a change of basis, to some peculiar uses in calculus.

Normally,  matrices are noted using large parenthesis  and the numbers written
down in a grid-like disposition as follows. This is a generic 3x3 matrix:

M

m11

m21

m31

m12

m22

m32

m13

m23

m33

In general, a pxq matrix is noted as above with the exception that it has p rows
and q  columns.  The  above matrix  can  also  be  written  M=(mij) with  i  and j
varying from 1 to 3. The first index is the row number, the second index is the
column number, as in the example above.

A matrix for  which p=q, such as the M matrix above, is said to be a  square
matrix. There exist a particular type of square matrix called an identity matrix.
There  is  one  such  matrix  for  each  type  of  square  matrix  (e.g.  one  for  1x1
matrices, one for 2x2 matrices, one for 3x3 matrices, etc...) As an example, the
3x3 matrix is given here:

1

0

0

0

1

0

0

0

1

Strictly speaking, the identity matrix I=(mij) is defined such as:

mij=0 if i¹j and mij=1 if i=j

Matrix operations

19



Matrix  addition is defined as follows. Given 2 matrices A=(aij) and B=(bij) of
same dimension pxq, then U=(uij)=A+B is defined as being (uij)=(aij+bij).

Matrix multiplication by a scalar is defined also as follows. Given the matrix M
and a scalar k, then the operation U=(uij)=k´M is defined as uij=k´mij.

Matrix  multiplication is  a  bit  more  involved.  It  is  defined  using  sums,  as
follows. Given matrix A of dimension pxq, and matrix B of dimension qxr, the
product C=AxB is given by:

cij=å1£k£q(aik´bkj)

More explicitly, for example, we have, for A and B 2x2 matrices:

c11=a11´b11+a12´b21

c12=a11´b12+a12´b22

c21=a21´b11+a22´b21

c22=a21´b12+a22´b22

(Note: å1£k£q(aik´bkj) means "sum of (aik´bkj) for k varying from 1 to q.")

It  is important  to notice that matrix  multiplication is  not commutative in the
general case. For example, it is not true that A´B=B´A with A and B matrices
in the general case, even if A and B are square matrices. Matrix multiplication is,
however,  associative (ie,  A´(B´C)=(A´B)´C)  and  distributive (ie,
A(B+C)=AB+AC).

The identity matrix has the property that, for any matrix A, A´I=I´A=A (I is the
neutral element of matrix multiplication).

Matrix transposition of matrix A, noted AT, reflects the A matrix along the great
diagonal. That is, say A=(aij) and AT=(bij), then we have bij=aji.

There are also other interesting operations you can do on a matrix, however they
are much, much more involved. As of now, I am not willing to get too deeply into
this.  The  topics  of  interest  are  matrix  determinant  (which  has  a  recursive
definition) and matrix inversion. I will content myself by giving one definition of
matrix determinant and one way of finding matrix inverse. Note that there are at
least a couple of different definitions for determinant,  though they usually boil
down to the same thing. Also, there are many ways of finding the inverse of a
matrix, I will contend myself with presenting only one method. Strict definitions
will be given, for more extensive coverage, consult a linear algebra book.

20



Given a matrix M=(mij), of size 1x1, the determinant (sometimes written detM)
is  defined  as  D=m11.  For  matrices  of  size  nxn  with  n>1,  the  definition  is
recursive. First, pick an integer j such that 1£j£n. For example, you could pick
j=1.

D=mj1´Cj1+mj2´Cj2+...+mjn´Cjn

The  Cij are  the  cofactors  of  M -  they  require  a  bit  more  explaining,  which
follows.

First let us define the minor matrix Mij of matrix M. If M is a nxn matrix, then

the Mij matrix is a (n-1)x(n-1) matrix. To generate the Mij matrix, remove the ith

line and jth column from the M matrix.

Second what interests us is the cofactor Cij, which is defined to be:

Cij=(-1)i+j´detMij

As an example, the determinant of the 2x2 matrix M is m11´m22-m12´m21,
and the determinant of a 3x3 matrix M is 

D3x3= m11´(m22´m33-m23´m32)

- m12´(m21´m33-m23´m31)

+ m13´(m21´m32-m22´m31)

Given a matrix A, the inverse of the matrix, noted A-1 (if it exists), is such that A
´A-1=A-1´A=I. It is possible that a matrix has no inverse.

To inverse the matrix, we will first define the  adjacent matrix of A, which we
will call B=(bij). Let Cij denote the i,j cofactor of A. Then, we have:

bij=Cij

Which completely defines the cofactor matrix B. The inverse of A is then:

A-1=(1/detA)´BT

Another method of inverting matrices, which might be preferable for numerical
stability reasons but will not be discussed here, is the Gauss-Jordan method.

Exercise

21



Q1 - Compute the product of these two matrices:

.
m11

m21

m31

m12

m22

m32

m13

m23

m33

n11

n21

n31

n12

n22

n32

n13

n23

n33

Answer

A1

.m11 n11 .m12 n21 .m13n31

.m21n11 .m22 n21 .m23n31

.m31n11 .m32 n21 .m33n31

.m11 n12 .m12n22 .m13n32

.m21n12 .m22n22 .m23n32

.m31n12 .m32n22 .m33n32

.m11 n13 .m12n23 .m13 n33

.m21n13 .m22n23 .m23 n33

.m31n13 .m32n23 .m33 n33

Matrix representation & linear transformations

The following set of equations:

m11´x+m12´y+m13´z=A

m21´x+m22´y+m23´z=B

m31´x+m32´y+m33´z=C

is equivalent to the matrix equation that follows:

.
m11

m21

m31

m12

m22

m32

m13

m23

m33

x

y

z

A

B

C

It is also equivalent to the following vector equations

P=(m11,m21,m31), Q=(m12,m22,m32), R=(m13,m23,m33)

X=(x,y,z)

D=(A,B,C)

D=X·(P,Q,R)

22



This means that matrix can be used, amongst other things, to represent systems of
equations,  but  also  a  change  of  basis.  Look  back  on  the  vector  mathematics
chapter and you will see that D=X·(P,Q,R) literally means "transform X, which is
expressed in PQR space, in whatever space PQR is expressed in (could be ijk
space for example), the answer is labeled D."

The matrix form can also be written as follows:

M´X=D

This is also called the  linear transformation of  X by M. In this case,  if  the
matrix M is invertible, then we can premultiply both sides of the equality by M-1,
as follows:

M-1´M´X=M-1´D

And, knowing that M-1´M=I (and that matrix multiplication is associative as we
saw before), we substitute into the above:

I´X=M-1´D

And knowing that I´X=X, we finally get:

X=M-1´D

That  is  a  very  elegant,  efficient  and  powerful  way  of  solving  systems  of
equations. The difficulty is of course finding M-1. For example, if we know M, D
but not X, we can use the above to find X. This is what should be used to solve
question 3 in chapter "Alcoholism and dependance". For 3d graphics people, this
is the single most useful application of matrix inversion: sometimes you have a
point in ijk space, and you want to express them in pqr space. However, you don't
originally  have ijk  expressed in  pqr  space,  but  you have pqr  expressed in  ijk
space. You will then write the transformation of a point from pqr space to ijk
space,  then  find  the  inverse transformation  as just  described and then  inverse
transform the point to find it's position in pqr space.

Another  very  interesting  aspect  is  as  follows.  If  we  have  a  point  P  to  be
transformed by matrix M, and then by matrix N. What we have is:

P'=M´P

P''=N´P'

By combining these two equations, we get

P''=N´(M´P)

23



However, by associativity of matrix multiplication, we have:

P''=(N´M)´P

If  for  instance,  we  plan  to  process  a  great  many  points  through  these  two
transformations in that particular order, it is a great time saver to be able to first
calculate A=N´M, and then simply evaluate P''=A´P for all P's, instead of first
calculating P' then P''. In linear transformations terminology, A is said to be the
linear combination of M and N.

24



Affine transforms

Introduction

As of now, we have seen linear transformations. Linear transformations can be
used  to  represent  changes  of  basis.  However,  they  fail  to  take  into  account
possible translation, which is of top priority to 3d graphics. An affine transform
is, roughly, a linear transform followed by a translation (or preceded, though it is
more useful for 3d graphics to picture them as being followed by the translation
instead).

Affine transformations

A simple proof can be used to demonstrate that a 3x3 matrix cannot be used to
translate a 3d point.  Given any 3x3 matrix A and the point P=(0,0,0),  then A
´P=(0,0,0), thus the point is untranslated. It is merely rotated/skewed/stretched
about the origin.

However,  there is  a  neat  trick.  A linear  transform in 4d space projected  in  a
particular fashion in 3d space is an affine transformation. Without going into the
details, a 4x4 matrix can be used to model an affine transform in 3d. The matrix
has the following form:

m11

m21

m31

0

m12

m22

m32

0

m13

m23

m33

0

Tx

Ty

Tz

1

The (mij) 3x3 submatrix is the normal rotation/skew/stretch (the linear transform
we  studied  previously).  The  (Tx,Ty,Tz)  vector  is  added  to  the  point  after
transform. A point (x,y,z) to be transformed into (p,q,r) is noted:

25



.

m11

m21

m31

0

m12

m22

m32

0

m13

m23

m33

0

Tx

Ty

Tz

1

x

y

z

1

p

q

r

1

Another way of modelling affine transform is to use the conventional 3x3 matrix
we  were  using  previously,  and  to  add  a  translation  vector  after  each  linear
transform. The advantage of this is that we do not do unnecessary multiplications
for translation and also the bottom row of the 4x4 matrix which is (0,0,0,1) that
can be optimized out. However, the advantage of using the 4x4 matrix on the
conceptual level (not on the implementation level) is that you can then compute
affine transformation combinations and inversions, the exact same way that we
were doing in the previous section.

A very special  note.  Sometimes it  becomes useful to distinguish vectors from
points in space. A vector is  not affected by a translation,  while a point is. To
illustrate our example, think of a plane and a plane's normal. Let's say we take
three points in the plane,  rotate them and translate them, we get a new plane.
These points are affected by the translation and the rotation. However, the plane
normal is only affected by the rotation.

When  using  affine  transforms  with  the  4x4  matrix  above,  a  vector  (x,y,z)  is
represented by (x,y,z,0) and a point is represented by (x,y,z,1). This way, when
you multiply a vector by a 4x4 matrix, the translation does not affect it (try it and
you will see), while a point is affected by it.

This very important aspect gives meaning to the various operations on points and
vectors.  Sums  and  differences  of  vectors  are  still  vectors.  (E.g.  (a,b,c,0)+
(d,e,f,0)=(a+d,b+e,c+f,0),  which is still  a vector).  Difference of two points is a
vector. This is very important:

(a,b,c,1)-(d,e,f,1)=(a-d,b-e,c-f,0) (a vector since the last component is 0)

Sum of two points has  no meaning. (It can be given one, but for us it has no
meaning).  This  is  illustrated  this  way:  (a,b,c,1)+(d,e,f,1)=(a+d,b+e,c+f,2).  The
last component is no 0, so it's not a vector, and it's not 1 so it's not a point. (We
could use homogeneous coordinates  and give  it  a  meaning,  but  this  is  totally
unimportant.)

Sum of a vector and a point is a point. Subtracting a vector from a point yields a
point, also.

Exercise

26



Prove  that  the  sum  of  a  vector  and  a  point  is  a  point  and  not  a  vector  or
undefined,  and prove that the difference of a point  and a vector  is a point  as
opposed to a vector or undefined. What is the meaning if any of multiplying a
point by a scalar? a vector by a scalar?

Affine transform combination and inversion

The most straightforward way to compute the affine combination or inversion is
to write down the 4x4 matrices and perform the matrix operations on them. This
will yield the correct results. It is also possible to proceed in a different way, as
presented here.

Let an affine transform be represented by the (M,T) couple, where M is the 3x3
linear transform matrix and T is the 3d vector which is added after the M matrix
is applied. Then, the affine transform U of vector V can be written as:

MV+T=U

If we want to find the inverse transform, we want V as a function of U. Simple
matrix arithmetics tells us the following:

MV=U-T

V=M-1(U-T)

V=M-1U-M-1T (distributivity  of  matrix  multiplication  over  matrix
addition)

Hence, the inverse of affine transform (M,T) is (M-1,-M-1T).

Affine transform combinations can be computed in a similar way. Let's assume
we want to find the affine transform U of V by (M,T), then the affine transform
W of U by (N,S). This means:

U=MV+T W=NU+S

W=N(MV+T)+S

W=NMV+NT+S

W=(NM)V+(NT+S)

Thus, the combination of (M,T) followed by (N,S) is simply (NM, NT+S).

27



Exercise

Q1- Assume we have three points P={P1,  P2,  P3} in 3d and the three points
Q={Q1, Q2, Q3} also in 3d. These points are read from a special device and their
real location in 3d space is known with very good precision (note: this means
there is no perspective distortion in our data). We know that the points P and Q
are the very same points, except that they're viewed from a different location.
This means that the points in Q are the points in P transformed by some affine
transform A. However, we do not know which points in Q correspond to which
points in P. (ie, Q1 is not necessarily the affine transform of P1, it might be the
affine transform of P2 or P3). You can assume that the points P1, P2 and P3 form
a nondegenerate triangle whose sides all measure a different length.

Q2- We have roughly the same problem as in Q1, except now we have n>3 points
P=(P1, P2, P3, ..., Pn) and the corresponding Q=(Q1, Q2, Q3, ..., Qn). Can you
find a way to compute the affine transform while minimizing error? (Warning -
this is difficult.)

Answer

A- First step is to determine which point in Q correspond to which point in P.
Since they're the same points viewed from different angles, we can assume the
linear transform part of the affine transform is orthogonal, therefore it preserves
lengths and angles. We can use that to find which points should be associated. To
this purpose, let u=P2-P1, v=P3-P1. Then, find the i,j, k such that |u|=|Qj-Qi|, |v|=|
Qk-Qi|. Since we assumed the sides of the triangle have all different lengths, there
is only one i,j,k which will work. We can simply try all 6 combinations until one
works.  Then,  we know that  P1 corresponds  to  Qi,  P2  corresponds to  Qj,  P3
corresponds to Qj.

Now, let R1, R2, R3 be Qi, Qj, Qk respectively (this is to simplify notation a bit).
We need a third vector, which we generate as follows. Let w=u´v. Note that, as
seen in the last section, u, v and w are vectors and therefore are not affected by
translations. Let the affine transform A be represented by (M,T) a 3x3 matrix and
a 3d vector. Let p=R2-R1, q-R3-R1 and r=p´q.

Then, we have that p=Mu, q=Mv, r=Mw (prove it, especially the last one).

This can be re-written as

M(u|v|w)=(p|q|r)

where (u|v|w) denotes the 3x3 matrix formed by taking the vectors u, v and w and
putting them in as column vectors. Then, we can compute W by calculating

M=(p|q|r)(u|v|w)-1 (*)

28



Now we have computed the M matrix. We need to compute the T vector. We
know that R1=MP1+T, hence T=R1-MP1 and we are done.

A2- The general outline is similar to A1, except that at step (*), instead of using
the  conventional  matrix  inversion,  we need  a  so-called  pseudoinverse  matrix,
denoted M+, which is

M+=(MTM)-1MT

This matrix is a generalization of the conventional matrix inverse. It minimizes
mean square error in overconstrained sets of equations like we have here. See [2]
for  more information  on this  topic.  Note that  finding which Qi correspond to
which Pj is slightly more difficult, but a similar method can be used. Also note
that the T vector should be computed for all points and then averaged to minimize
error. Additionally, we were generating a w vector which was the cross product
of u and v. Now we  might require something analogous to generate a linearly
independent component else the matrix will be degenerate and inversion will be
highly error prone. This especially if the points are suspected to be coplanar.

29



Applications of linear 
transformations

Introduction

In this section we will discuss the applications of the linear transformation theory
we saw in the previous sections.  When doing 3d graphics,  the usual situation
occurs. We have a description of one or more objects. We have their locations
and orientations in space,  relative to some point of reference.  We move them
around,  rotate  them,  usually  about  their  own coordinate  system.  The  camera
might also be moving, rotating and such. In that case, it is likely that we have an
orientation and position for the camera object itself. We would also like that the
eye points in the direction of (0,0,1) in camera space, and that up be (0,1,0) in
camera space.

Orientation and position will be given by an affine transform matrix. The (mij)
submatrix gives orientation and the 4th column has the translation vector.

World space, eye space, object space, outer space

First off we are going to require a global system of reference for all the objects.
This  is  usually  called  "World space".  An  affine transform that  describes  an
object's position and orientation usually does so in relation to world space (this is
generally not true for hierarchical structures, as we will see later). This introduces
a new concept; a matrix A, representing an affine transform that takes an object
from space M to space N (in our example,  M is object space and N is world
space) is usually noted AN¬M. This has the natural tendency to make us combine
the affine transform from right to left instead of left to right, which is correct.

The  most  typical  example  is  as  follows.  We  have  an  object  and  its  affine
transform AWorld¬Object. We also have a camera position and orientation given by
CWorld¬Camera. In that case, the first thing we want to do is invert the transform
CWorld¬Camera to find the CCamera¬World transform. Then you will be transforming
the points Pi in the object with CCamera¬World´AWorld¬Object´Pi=MCamera¬Object´Pi.

30



As a helper, notice that the little arrows make a lot of sense, as shown below:

Camera¬World,  World¬Object,  which  concatenates  intuitively  to
Camera¬World¬Object  or  simply  Camera¬Object.  Thus,  the  above
transformation transforms from object space to camera space directly. One merely
calculates MCamera¬Object=CCamera¬World´AWorld¬Object and multiplies all Pi's with is.

Transformations in the hierarchy (or the French revolution)

It may be useful to express an object A's position and orientation relative not to
the world, but to some other object B. This way, if B moves, A moves along with
it.  In plain words, if we say "The television is resting 2 centimeters above the
desk on its four legs", then moving the desk does not require us to change our "2
centimeters above the desk" position - it is still 2 centimeters above the desk as it
is moving along with the desk (careful not to drop it). On the other hand, if we
had  said  "The  television  is  1  meter  above  the  floor"  and  "The  desk  is  95
centimeters above the floor", and then proceed to move the desk up 1 meter, then
the position of the desk is "1m95 above the floor". Additionally, we have to edit
the position of the television and change it to "The television is 2 meters above
the floor". Notice the difference between these two examples.

This  can  be  implemented  very  easily  the  following  way.  Make  an  affine
transform that describes orientation and position of television in relation to the
desk. This is called ADesk¬Television. Then we have an orientation and position for
the desk, given by BWorld¬Desk. Notice that this last affine transform is relative to
world space. We then of course have the mandatory CWorld¬Camera which we invert
to find the CCamera¬World transform. We then proceed to transform all points in the
television to camera space, and also all points from the desk to camera space. The
former is done as follows:

CCamera¬World´BWorld¬Desk.´ADesk¬Television´Pi.

Notice  again  how the  arrows  concatenate  nicely.  The  points  on  the  desk  are
transformed with this:

CCamera¬World´BWorld¬Desk.´Qi.

Again, the arrows make all the sense in the world.

Some pathological matrices

31



Rotating a point in 2d is fundamental. In the example above, we wish to rotate
(x,y) to (x',y') by an angle of b. The following can be said:

y'=sin(a+b)r x'=cos(a+b)r

With the identities sin(a+b)=sin(a)cos(b)+sin(b)cos(a) and cos(a+b)=cos(a)cos(b)-
sin(a)sin(b), we substitute.

y'=rsin(a)cos(b)+rcos(a)sin(b)

x'=rcos(a)cos(b)-rsin(a)sin(b)

But from figure 3 we know that

rsin(a)=y and rcos(a)=x

We now substitute:

y'=ycos(b)+xsin(b)

x'=xcos(b)-ysin(b)

Rotations in 3d are done about one of the axis. The exact rotation used above
would rotate about the z axis. In matrix representation, we write the x, y and z
axis rotations as follows:

1

0

0

0

cosq

sinq

0

sinq

cosq

cosq

0

sinq

0

1

0

sinq

0

cosq

cosq

sinq

0

sinq

cosq

0

0

0

1

(x axis) (y axis) (z axis)

These matrices can be extended to 4x4 matrices simply by adding a rightmost
column vector of (0,0,0,1) and a bottom row vector of (0,0,0,1) (e.g. the 1 in the
bottom right slot is shared by the column and the row vector).

32



If  you want,  you can always specify  the  orientation  of  an object  using three
angles.  These  are  formally  referred  to  the  Euler  angles.  Unfortunately,  these
angles are not too useful for many reasons. If two angles change with constant
speed, the object will definitely not rotate with constant speed. Also, sometimes, a
problem known as  gimbal lock occurs, where you suddenly lose one degree of
freedom (this looks like the object's rotation in a direction stops, to start again in
another  strange  direction).  Furthermore,  the  angles  are  not  relative  to  object
coordinate system nor world coordinate system.

Thus  it  is  preferable  to  specify  object  orientation  with  an  orientation  matrix.
When  rotation  about  a  world  axis  is  desired,  the  orientation  matrix  is
premultiplied by one of the above rotation matrices, and when a rotation about an
object axis is desired, the orientation matrix is postmultiplied by one of the above
rotation matrices. Note that it is possible to rotate about an arbitrary vector and/or
interpolate between any two given orientations when using quaternions, which is
covered in a later chapter..

33



Perspective

Introduction

Perspective was a novelty of the Renaissance. It existed a long time before but
had been forgotten by the western civilizations until that later time. As can be
seen from paintings before Renaissance,  artists had a very poor grasp of  how
things should appear on a painting.  The edges from tables and desks were not
drawn converging to an "escape point", but rather all parallel.  This gave these
paintings the peculiar feeling they have when compared to more modern, more
perspective-correct paintings.

Perspective is the name we give to that strange distortion that happens when you
take a real-life 3d scene (your garden) and take a picture of it. The flowers in the
foreground appear larger than the barn in the background. This particular effect is
sometimes referred to as  foreshortening.  Other effects come into play, such as
focus blur (very likely, you were either focussed on the flowers or the barn; one
looks clear, the other is very fuzzy), light attenuation, atmospheric attenuation,
etc...

We know today that light rays probably aren't moving in a straight line at all.
Even in the vacuum, they oscillate a bit.  When travelling through matter,  it  is
deviated all the time, split, reflected and all sorts of other nonsense. Sometimes it
can  be  useful  to  model  all  these  nice  effects,  however,  they  are  not  always
necessary or desirable. One thing is for sure, a perfect or near-perfect simulation
of all that we know about light today would be tremendously CPU-intensive, and
would require an incredible amount of work on the software end of the project.

In  normal,  day-to-day life,  when you're  significantly  larger  than  an  atom but
significantly  smaller  than  a  planet,  light  is  usually  pretty  linear.  It  travels  in
straight  rays,  only  bending  at  discrete  points  that  are  more  or  less  easy  to
calculate, definitely more than the fuzzy way light bends in a prism.

A further simplification that we can make is that light only reflects diffusely on
the objects around you. This is usually the case, unless you come up to a highly
polished or  metallic  surface where you can see your  reflection.  But the usual
desk,  bed,  snake  and  starships  are  pretty  dull  in  appearance,  with  perhaps  a
diffuse highlight from where the light is coming from.

34



Another simplification we usually make comes from the fact that light bounces
off everything and eventually starts coming from about all direction with a low
intensity. This is often called the ambient light. Some further optimizations, more
hacks than actual physical observations, will make you go faster and still  look
good.

A simple perspectively incorrect projection

The most simple  projection is  an affine transform from 3d to 2d,  sometimes
referred to as  parallel projection. As an example, the transform (x,y,z)®(x,y)
transforms the point (x,y,z) in 3d to the point (x,y) in 2d, is such a transform.
Another simple example is the (x,y,z)®(x+z,y+z) transform. The problem with
this is, no matter how far or close in z the object is, it always appears the same
size  on  the  screen.  This,  or  a  variant  of  this,  is  true  for  all  of  the  parallel
projections.  These  projections  are  called  parallel  because  parallel  lines  in  3d
remain parallel  once projected in  2d.  The image below is  a parallel  projected
cube:

The perspective transformation

35



The  perspective  transformation (or  perspective  projection)  is  incredibly
simple once you know it, but it is often good to know where it comes from. We
will put to use some of the assumptions we previously stated.

The first assumption we made is that light goes in a straight line. This is great
because it will allow us to make maximum use of all the linear math we have
learnt since high-school.

What we have to realize is, for the eye to see an object, light has to travel from
the object to the eye.  Since light  travels in a straight  line,  it  has to either  go
straight to the eye or bounce off a few reflective surfaces before getting there.
However,  since  we are  assuming  there  are  no  such  reflective  surfaces  in  the
environment,  the only possibility  left  is that the light  comes straight  from the
object to the eye. This line is formally referred to as a projector.

Another way doing it is the exact inverse. Starting from the eye, shoot a ray in a
direction until it hits something. That is what you are seeing in that direction.

Obviously, we are not going to shoot an infinite number of rays in all direction,
we  would  never  even  start  generating  an  image  if  we  did  that.  The  usual
approximation  is  to  shoot  a  finite  amount  of  rays  spread over  an  area  in  an
arbitrary manner.

There is another matter that needs to be taken care of. In reality, the image will be
sent to screen, paper or some other media. This means that, in our model,  the
light does not reach the eye, it stops at the screen or paper, and that is what we
display, so that reality takes over for the rest of the way and carries real light rays
from the screen to the real eyes. This poses a problem of finding where the light
rays intersect the screen or paper.

Using the material in the previous section, we are able to transform all objects to
camera space, where forward is (0,0,1) and up is (0,1,0) and the eye is at (0,0,0).
We still do not know where in space the screen lies. We will have to make a few
more assumptions, that it is in front of the eye, perpendicular to the eye direction
which is (0,0,1), and flat. The distance at which it lies is still undecided. We will
just work with the constant k for the distance, then see what value of k interests
us most. The eye is formally referred to as center of projection, and the plane the
surface of projection.

Since it is flat, it lies on a plane. The plane equation in question is Ax+By+Cz=D
as  seen  before,  where  (A,B,C)=(0,0,1)  is  the  plane  normal.  Thus  the  plane
equation is z=D. The distance from the eye is thus D, and we want it to be k, so
we set D=k. The plane equation is therefore z=k. We set a local basis for that
plane  with  vectors  i=(1,0,0)  and j=(0,1,0)  and position  W=(0,0,k).  The  plane
equation is thus (a,b)·(i,j)+W. (a,b) are the local coordinates on the plane. They
happen to correspond to the (x,y) position on the plane in 3d space because (i,j)
for the plane is the same as (i,j) for the world.

36



The question we now ask ourselves is this: given a point that is reflecting light,
say point (x,y,z), what point on screen should be lit that crosses the light ray from
(x,y,z) to the eye, which is at (0,0,0).

Here  we  will  use  the  definition  of  the  line  in  n  space  we  mentioned  before
(namely, tV+W). Since the light ray goes from (x,y,z) to (0,0,0), it is parallel to
the vector (x,y,z)-(0,0,0)=(x,y,z). Thus, we can set V=(x,y,z). (0,0,0) is a point on
the line, so we can set W=(0,0,0). The line equation is thus t(x,y,z).

We now want the intersection of the line t(x,y,z) with the plane z=k. Setting t=k/z
(assuming z is nonzero), we find the following: k/z(x,y,z)=(k´x/z,k´y/z,k). This
point has z=k thus it is in the plane z=k, thus it is the intersection of the plane z=k
and the line t(x,y,z).

Trivially  from that,  we find that  the point  (a,b)  on screen are (k´x/z,k´y/z).
Thus,

(x,y,z) perspective projects to (k´x/z, k´y/z).

A  small  note  on  aspect  ratios.  Sometimes,  a  screen's  coordinate  system  is
"squished" on one axis.  In this case, it  would be wise to "expand" one of the
coordinates to make it larger to compensate for the screen being squished. For
example, if the screen pixels are 3/4 as wide as they are high, it would be wise to
multiply the b component of screen position by 3/4, or the a component by 4/3.
This  can be computed using 2 different  values of  k instead of  the same.  For
example, use k1=k and k2=ratio*k. Then, the perspective projection equation is:

(x,y,z) perspective projects to (k1´x/z, k2´y/z).

Referring again to physics, only one point gets to be projected to a particular
point on screen. That is, closer objects obscure objects farther away. It will thus
be useful to do some form of visible surface determination eventually. Another
special case is that anything behind the eye does not get projected at all. Thus, if
before the projection,  z£0,  do not  project.  The image below is  a perspective
projected  cube.  Compare  with  the  parallel  projected  cube  of  the  preceding
section.

Theorems

37



The following theorems are not always entirely obvious, but they are of great
help when doing 3d graphics. I will attempt to give the reader rough proofs and
justifications when possible, usually they will be geometrical proofs for they are
much more natural in this case.  These proofs are not very formal,  but formal
proofs are not hard to find, just much less natural.

A  line  in  3d  perspective  projects  to  a  line  in  2d.  However,  line  segments
sometimes have erratic behavior. The proof is as follows. If the object to project
is a line, then the set of all projectors pass through the center of projection, which
is a point, and the line. Since projector are linear, they all belong to the plane P
defined by the line and the point. Thus, the projection will lie somewhere in the
intersection of the plane P and the projection plane. However, the intersection of
two planes is generally a line. Here follows the exception.

If the planes are parallel, since the projection plane does not pass on the eye, they
are necessarily disjoint. The projection in this case is nothing.

A line segment generally projects to a line segment. First, the only portion of the
line segment that  needs to  be projected is  the portion  for  which z>0,  as seen
previously. If the segment crosses z=0, it should be cut at z=0, and only the z>0
section  kept.  Second,  the  projectors  for  a  line  segment  all  lie  in  a  scaled  up
triangle  which  intersects  the  projection  plane  in  a  particular  way,  and  the
intersection of a triangle and a plane is always a line segment.

Next proof is the proof that a n-gon (a n-sided polygon, example, triangles are 3-
gons, squares are 4-gons, etc...) projects to a n-gon. It can be demonstrated that
any polygon can be triangulated in a finite set of triangles, so the proof is kept to
triangles only. Also, if the n-gon crosses z=0, it should be cut at z=0, and only the
z>0 section kept.

A triangle projects to a triangle. The projectors of a triangle all lie in an infinitely
high tetrahedron, and the intersection of an infinitely high tetrahedron and the
projection plane, in the non-infinite direction is always a triangle.

In a similar line of thought, the set of all projectors of a sphere form a cone. The
intersection of the cone with the projection plane can form any conic. Namely, a
hyperbola, an ellipse or a circle. If the sphere contains the origin, the projection
fills the whole projection plane.

Other applications

38



By not losing sight of the idea behind the projection, one can accomplish much
more than what has been just described. One example is texture mapping. Often,
a polygon will be drawn on screen, but some properties of the polygon (say color
for example) changes across the polygon in 3d space.  When this happens,  we
want  to  know  what  point  from  the  polygon  we  are  currently  drawing.  An
application of this is texture mapping.

Texture mapping involves taking the point on screen, finding the projector that
goes through it and finding the intersection of that projector with the polygon. We
then have a point in 3d space. However, it is usually much more useful to make a
local 2d coordinate system for the plane containing the polygon and make the
property a function of the location in that 2d coordinate system. This is what I did
below in the snapshot of the screen from my math software.

39



Let (u,v) be the coordinates on the projection plane, (p,q) the coordinates on the projected plane, 
(Xp,Yp,Zp) and (Xq,Yq,Zq) the two vectors defining the plane, (A,B,C) the origin of that plane and the 
projection x=k1*z*u, y=k2*z*v. Then, the intersection of the projection ray and the projected plane in 
the projected plane's coordinate system (p,q) in function of the projection plane coordinate system 
(u,v) is:

z .p Zp .q Zq C

..k1 z u .p Xp .q Xq A

..k1 ( ).p Zp .q Zq C u .p Xp .q Xq A Equation A

..k2 z v .p Yp .q Yq B

..k2 ( ).p Zp .q Zq C v .p Yp .q Yq B Equation B

Now, let's solve for p then for q.

..k1 ( ).p Zp .q Zq C u .p Xp .q Xq A

p= ( )...k1 u q Zq ..k1 u C .q Xq A
( )..k1 Zp u Xp

..k2 ( ).p Zp .q Zq C v .p Yp .q Yq B

q= ( )...k2 v Zp A ...k2 v C Xp ...Yp k1 u C .Yp A ...B k1 Zp u .B Xp
( )...k2 v Zp Xq ...k2 v Zq Xp ...Yp k1 u Zq .Yp Xq ...Yq k1 Zp u .Yq Xp

( )..( ).Zp A .C Xp v k2 ..( ).Yp C .B Zp u k1 .B Xp .Yp A
( )..( ).Yp Zq .Yq Zp u k1 ..( ).Zp Xq .Zq Xp v k2 .Yp Xq .Yq Xp

Similarly,

p= ( )...k1 u Zq B ...k1 u C Yq ...Xq k2 v C .Xq B ...A k2 v Zq .A Yq
( )...k2 v Zp Xq ...k2 v Zq Xp ...Yp k1 u Zq .Yp Xq ...Yq k1 Zp u .Yq Xp

( )..( ).Zq B .C Yq u k1 ..( ).Xq C .A Zq v k2 .A Yq .Xq B
( )..( ).Yp Zq .Yq Zp u k1 ..( ).Zp Xq .Zq Xp v k2 .Yp Xq .Yq Xp

As can be quite plainly seen above, the equations for p and q above are of the
form:

p=(Du+Ev+F)/(Au+Bv+C)

q=(Gu+Hv+I)/(Au+Bv+C)

Notice that the denominator  is the same for both p and q.  The values for  the
coefficients A through I can be found by examining the snapshot of the math
software screen above.

40



Constant Z

There is one specific case that might be especially interesting, given slow division
but  fast  addition.  The  plane  equation  for  a  polygon  is  Ax+By+Cz=D.  The
projection is u=k1x/z, v=k2y/z. Then, we get x=uz/k1, y=vz/k2. By substituting
this into the plane equation of the polygon, we find A(uz/k1)+B(vz/k2)+Cz=D.
Then, we transform as follows:

z(A'u+B'v+C)=D (A'=A/k1, B'=B/k2)

Let  us  examine  what  happens  when  we  look  at  a  slice  of  constant  z  in  the
polygon's plane.

k(A'u+B'v+C)=D

Mu+Nv+K=0 (M=kA', N=kB', K=C-D)

This is a line equation in (u,v) space. This means that, assuming non degenerate
cases, a constant z slice of the polygon's plane projects to a line in the projection
plane. Furthermore, and interestingly enough, the slope of the line is independent
of z. Therefore, for a given polygon plane, all the constant-z lines of that plane
project to parallel lines on screen. However, looking back at the Ax+By+Cz=0,
taking a constant z, we get a line equation of x and y, therefore, the intersection
of a constant z plane with the polygon plane is also a line.

Now let's examine the projection equation. Let us assume that we wish to project
everything that's on a specific constant-z line of the polygon. Then, the projection
equation is simply u=Px, v=Qy, where P=k1/z, Q=k2/z, constants.

This is what it all boils down to. In any polygon, there are lines of constant z. If
we want to texture map the polygon, we only need to find these lines and draw
them on screen, merely scaling the texture for such lines by a constant. Since all
these lines are parallel on screen, it is possible to find the slope the line on screen
that will yield a constant z on the polygon's plane, and then draw to the screen
using these as scanlines. One has to be careful to cover each pixel, but that is not
too difficult.

As an example,  a wall's constant-z lines are vertical  once projected (assuming
we're looking at it  upright).  A floor or ceiling's constant-z lines are horizontal
once projected. This can be exploited to texture map floors, ceilings and wells
very quickly.

Texture mapping equations revisited

41



We derived the texture mapping equations using the intuitive math above, and got
nasty looking rational expressions with even nastier coefficients (the constants A,
B, C, D, E, F, G, H and I). In practice it might be useful to try to find an efficient
way of computing these constants.

There is a clever way to calculate these constants, but first we have to write down
a few properties. First let us observe that our texture map is an affine mapping
from our (x,y,z) 3d space to the (p,q) 2d texture map, which means that:

1- p=P1´x+P2´y+P3´z+P4

q=Q1´x+Q2´y+Q3´z+Q4

(for some P1, P2, P3, P4, Q1, Q2, Q3, Q4).

Second, assume that the plane equation of the polygon to be texture mapped is
given by

2- Ax+By+Cz=D (where (A,B,C) is the plane's normal, of course)

Third, write down the perspective projection:

3- (u,v)=(k1x/z,k2x/z)

From 3, get (x,y) as a function of u, v and z:

3a- (x,y)=(uz/k1, vz/k2)

Substitute x and y into the equation we had in 1 and 2 to get:

4- p=P1uz/k1+P2vz/k2+P3z+P4

q=Q1uz/k1+P2vz/k2+P3z+P4

5- Auz/k1+Bvz/k2+Cz=D

Now divide 4 across by z, get:

6- p/z=P1/k1´u+P2/k2´v+P3+P4/z=R1´u+R2´v+P3+P4/z

q/z=Q1/k1´u+Q2/k2´v+Q3+Q4/z=S1´u+S2´v+Q3+Q4/z

From 5, find 1/z, get:

7- 1/z=(A/(D´k1))´u+(B/(D´k2))´v+(C/D)=Mu+Nv+O (*)

Look  at  7  and compute  P4/z  and Q4/z  by  multiplying  across  by  P4 and Q4
respectively:

42



8- P4/z=P4´Mu+P4´Nv+P4´O

Q4/z=Q4´Mu+Q4´Nv+Q4´O

Substitute these two equations into 6 and get:

9- p/z =R1´u+R2´v+P3+P4´Mu+P4´Nv+P4´O

=(R1+P4´M)´u + (R2+P4´N)´V + (P3+P4´O)

=J1´u+J2´v+J3 (**)

(similarly)

q/z =K1´u+K2´v+K3 (***)

Now examine (*), (**) and (***). These are all linear expressions in (u,v). This
means that:

· 1/z is linear in screen space (u,v) after the perspective transform

· p/z is also linear in screen space after perspective transform

· q/z is also linear after perspective transform

Which  leads  us  to  the  following  conclusions:  we  can  interpolate  linearly  1/z
across the screen for  a polygon,  and that  will  be perspective correct.  We can
linearly  interpolate  p/z  across the  screen for  a  polygon,  and that  will  also be
perspective  correct.  We  can  interpolate  linearly  q/z  across  the  screen  for  a
polygon  and  that  will  also  be  correct.  Then,  we  can  find  the  (p,q)  texture
coordinate of any texel as follows:

p= (p/z) / (1/z)

q=(q/z) / (1/z)

A simple quotient of our linearly interpolated values.

This simply allows us to use maybe already existing linear interpolation routines
to figure out the perspective correct texture mapping, with only a simple tweak
added.

Bla bla

43



Other applications can also be found to the theory of the perspective projection. A
popular  application  is  for  the  rendering  of  certain  types  of  space  partitions,
popularly referred to as voxel spaces. Start with a short vector in the direction you
want  to  shoot  the  light  ray,  and start  at  the  eye.  Move in  short  steps  in  the
direction of the light ray until you hit an obstacle, and when you do, color the
screen point with the color of the obstacle you hit.

Basically, everything flows from the idea of this projection.

Reality strikes

In reality it is impossible to shoot enough projectors through points to cover any
area of the projection plane, no matter how small. The compromise is to accept an
error of about one pixel, and shoot projectors only through pixels. This means
you might entirely miss things that project to something smaller than a pixel, or
incorrectly  attribute  them  a  whole  pixel.  These  details  become  important  in
quality rendering.  In that case, steps have to be taken to ensure that sub-pixel
details have some form of impact on the global outlook of the image. Different
techniques can be used which will not be described here.

Another thing we're going to do is only project the vertices of lines and polygons
and use the theorems we found earlier to figure out the aspect of the projected
object. For example, when projecting a triangle, the projection is the triangle that
passes through the projection of the vertices of the unprojected triangle. However,
these projected vertices will very likely not fall on integer pixel values. In this
case, you have the choice of either rounding or truncating to the nearest pixel, or
taking into account sub-pixel accuracy for vertices in your drawing routine. The
former can be easily done, the latter is a much more involved topic which will not
be discussed.

The state of things as they are at the moment of this writing makes the texture
mapping equations a bit too expensive at 2 divisions per pixel. On most processor
today,  division  is  usually  significantly  slower  than  multiplication,  and
multiplication itself is significantly slower than addition and subtraction. This is
expected to change in the near future however. In the mean time, one can use
interpolations  instead  of  exact  calculations.  These  are  discussed  in  the  next
section.

44



Note that the operations X=A/C and Y=B/C can be replaced by the operations
T=1/C, X=T´A, Y=T´B. This essentially replaces two division by one division
and two multiplications, which can sometimes be actually faster. This exploits the
fact that the denominators are the same, just as in texture mapping. Additionally,
the T=1/C computation can be implemented using a lookup table. Or logarithm
tables can be used, by noting that a´b=exp(log(a)+log(b)) and a/b=exp(log(a)-
log(b)),  replacing a multiplication or  division by three lookups and an add or
subtract. All these tricks have been used at some time or other. They all have the
disadvantage of being less precise and taking up memory. Moreover, as CPUs
become faster at math, these method are actually slower than a normal division
operation  (example,  PowerPC).  As such,  these methods are  quickly becoming
obsolete, except on legacy hardware such as all PC's which use Intel CPUs.

45



Interpolations and approximations

Introduction

Frequently in computer graphics, calculations require too much processing power.
When this problem arises, many solutions are at hand. The most straightforward
solution is to completely forget about whatever causes the lengthy calculations.
However, that might not be satisfying. The second most straightforward solution,
in  a  certain  sense,  is  to  get  faster  hardware  and  contend  with  slower  image
generation. That still might not be satisfying. If this is the case, the only solution
left to us is to approximate.

Generally speaking, given a relatively smooth function of x over a finite range, it
is usually possible to approximate it with another, easier to compute function over
the same range.  Of course,  this will  generate some form of error.  Ideally,  we
should  pick  the  approximating  function  as  to  minimize  this  error  while
conforming to whatever constraints we may impose. However, minimizing error
is  not always straightforward,  and it  is  also usually  preferable to find a good
approximating  function  quick  than  the  best  approximating  function  after
complicated computations. (In the latter case, we might as well not approximate.)
Error computation is a rather complicated topic, and I do not wish to get involved
with it in here. For the more formally oriented reader, one popular definition of
error between f(x) and g(x) is ò(f(x)-g(x))2dx, the integral is to be taken over the
interval over which g(x) is to approximate f(x).

One  of  the  more  popular  type  of  approximating  functions  are  polynomials,
mainly because they can usually be computed incrementally in a very cheap and
exact  manner.  Fourier  series  are  generally  not  useful  because  trigonometric
functions cannot be computed very quickly. A very nice way of generating an
approximating polynomial is to use the Taylor series of the function we want to
approximate, assuming we have an analytical form of the said function.

Polynomials will be used to approximate everything from square roots to texture
mapping to curves.

Forward differencing

46



Forward differencing is used to evaluate a polynomial at regular intervals. For
example,  given the polynomial  y=a´x+b,  which is  a line,  one might  want  to
evaluate it at every integer value of x to draw a line on screen.

We must of course initially compute y(0)=a´0+b, or y(0)=b. But then, we can
exploit  coherence. Coherence is something that occurs just about everywhere in
computer  graphics,  and  exploiting  it  can  tremendously  cut  down  on  the
computations.

The next value we are interested in is y(1). But, y(1)=y(0)+y(1)-y(0). (Notice that
the y(0)'s cancel out).  However,  y(1)-y(0)=a.  Thus,  y(1)=y(0)+a.  Furthermore,
y(2)-y(1)=a, thus we can add a to y(1) to find y(2) and so on. Generally speaking,
y(n+1)-y(n)=[a´(n+1)+b]-[a´n+b]=a.

This extends to higher order polynomials. As an example, let's do it on a second
degree polynomial, and in a more formal manner. We will suppose a step size of
k instead of 1 for more generality, and the following generic polynomial:

y=Ax2+Bx+C

First, let's find y(n+k)-y(n) as we did before:

y(n+k)-y(n)=[A(n+k)2+B(n+k)+C]-[An2+Bn+C]

=[An2+2kAn+Ak2+Bn+kB+C]-[An2+Bn+C]

=2kAn+Ak2+kB

Let's  call  that  last  result  dy.  Thus,  y(n+1)=y(n)+dy(n).  Now  the  problem  is
evaluating dy(n). However, dy(x) is itself a polynomial (first order; a line),  so
forward  differencing  can  also  be  applied  to  it.  We thus  need  dy[n+k]-dy[n],
which is simply 2k2A.

Concretely, this is what happens. Let's say we have the polynomial x2+2x+3 with
a step size of 4 over the range 3-19, inclusively. We thus have A=1, B=2, C=3.
We calculated dy(x) to be 2kAx+Ak2+kB=2*4*1*x+1*42+4*2=8x+24.

First of all we calculate the initial values for y and dy, which are y(3)=18 and
dy(3)=48. The incremental value for dy is 2kA=32. Then, we proceed as follows:

Value of...

x y(x) dy(x)

3 18 48

47



(as initially calculated - now add dy(x) to y(x), 32 to dy(x) and 4 to x)

7 66 80

(once more, add dy(x) to y(x) and 32 to dy(x) and 4 to x)

11 146 112

(etc...)

15 258 144

19 402 176

These  can  be  extended  to  certain  multi-variable  polynomials  also.  Typically,
however,  the  simple  fact  that  the  polynomial  can  be  incrementally  evaluated
across a scanline is sufficient. Bilinear interpolations (r=Ap+Bq+C) are a special
case of multi-variable polynomials which can be evaluated especially well in an
incremental fashion. These occur naturally when interpolating texture coordinates
linearly or Gouraud shading across a triangle.

Approximation function

Finding  the  approximation  function  is  the  real  problem.  When  trying  to
approximate  a  function,  we usually  want  to  minimize  error  measure  in  some
specific way. However,  sometimes additional constraints have to be taken into
account. For example, when interpolating values across polygons, care should be
taken that they are interpolated in a way that does not cause too much contrast
and/or mach banding along the edges shared by more than one polygon.

One of the more obvious ways of generating an approximation polynomial is to
make a Taylor series expansion of whatever function you want to approximate
and only use the first few terms (Taylor series is taught in Calculus and is beyond
the scope of this text). This, however, does nothing about the edge constraint we
just mentioned. However, Taylor series do just fine, for example, for normalizing
vectors  that  are  supposed  to  be  normal  but  due  to  error  buildup  aren't.  The
problem  with  normalizing  a  vector  is  that  vector  (a,b,c)  has  a  norm  of
N=(a2+b2+c2)1/2, and that the normalization of (a,b,c) is 1/N ´ (a,b,c). Usually,
extracting  a  square  root  is  very  long,  and  a  division  is  also  longer  than  a
multiplication. It would be nice if we could find an approximation of 1/sqrt(x)
and multiply by that instead. Actually, the two first terms of the Taylor series
expansion of 1/sqrt(x) about 1 are:

1/sqrt(x)@(3-x)/2 (around x@1)

48



The division  by two can be accomplished with  a bit  shift,  and subtraction  is
usually fairly fast on any CPU. Using x=a2+b2+c2, we can find 1/sqrt(x) much
faster than otherwise.

The picture above demonstrates what happens when one approximates a value
that  varies  smoothly  across faces with  a  Taylor  series.  The  upper  half  of  the
picture shows a square for which the intensity of a pixel (x,y) is 1/x. The leftmost
pixels have x=1 (intensity 1), and the rightmost pixels have x=3 (intensity 1/3).
The  lower  half  shows  two  Taylor  approximations.  The  first  Taylor  series
expansion was done around x=1,  the  Taylor  polynomial  is  thus  4-6x+4x2-x3.
This corresponds to the lower left square. As can be seen, near the left edge, the
Taylor series is nearly perfect. Near x=2, though, it goes haywire. The bottom
right  square  is  a  Taylor  series  expansion  about  x=2  (the  polynomial  is  2-
3/2x+1/2x2-1/16x3). As can be seen, it is much closer to the real thing, but that's
only because 1/x becomes more and more linear after that point. But things that
are linear after the perspective transform are the exception rather than the rule.

The moral of this story is that if two faces are next to each other, and that the
shading  (or  any  other  property)  is  really  a  continuous  function,  but  we
approximate it using Taylor series about arbitrary points, it is very easy to get
something that does not look continuous at all.

Thus,  it  would be unwise to do a Taylor  series expansion of texture mapping
equations, or Phong shading and the like. Note that a property that varies with 1/x
is not a rare thing in computer graphics because of the perspective transform, thus
the example is very relevant.

A theorem of analysis that interests us is as follows. Given n points in the plane
(assuming none have the same x coordinate), there is a unique polynomial that
passes through all these points. This polynomial can be found using the linear
mathematics we were using previously. Here follows an example with a second
degree polynomial.

49



Let's say we want to find the quadratic polynomial that goes through the points
(x0,y0),  (x1,y1)  and  (x2,y2).  We  know  the  polynomial  is  of  the  form
Ax2+Bx+C=y. We rewrite all these constraints as the following equations:

Ax02+Bx0+C=y0

Ax12+Bx1+C=y1

Ax22+Bx2+C=y2

This can be re-written as the following matrix equation:

.

x02

x12

x22

x0

x1

x2

1

1

1

A

B

C

y0

y1

y2

Which can in turn be re-written as X´A=Y. Notice that X and Y are constant.
Then we solve for A, writing

A=X-1´Y

Different types of constraints can be put on the polynomials or its derivative(s),
yielding  different  types  of  polynomials.  The  subject  of  interpolation  is  quite
extensive and will not be fully discussed here.

50



Polynomial Splines

Introduction

In this section, I will have to assume a basic knowledge of calculus. Note that the
topic of spline is rather broad, hence only the basics will be covered here. For a
more detailed discussion, one can see [5].

Sometimes we have many control points (10, for example) that we want to use to
generate an interpolating polynomial. However, we might not want to use a 10th
degree  polynomial  for  several  reasons.  They're  hard  to  evaluate.  They're
numerically unstable. They tend to oscillate wildly between control points.

To resolve this, we make lower degree interpolating polynomials for each section
of  the  curve.  Typically,  polynomials  of  degree  1  (lines),  2  (quadratics)  or  3
(cubics)  are used.  Polynomials of degree higher  than 5 are unwieldy and also
sometimes exhibit undesirable behavior.

Basic splines

A spline will be defined by its type and a list of control points of the form {p1,
p2, p3, ..., pn} where pi=(xi,yi) some point in 2d space. The type can be a simple
line  segment  joining  each  control  points,  or  something  more  complex  like  a
Catmull-Rom cubic spline. Note that a spline does not necessarily pass through
all interpolation points. It is even possible that a spline does not pass through any
of the control points. We will examine such cases later.

We will  start  by  an  example  spline  of  degree  1  that  interpolates  through  all
control points. An example picture is shown below:

51



In the diagram, the points pi are ordered from left to right, and this is what will
happen most of the time, though it is not necessary for now.

The spline  is  made up of  5  spline  segments,  which are  line  segments  in  this
particular case. Let's look at the first segment that goes from p1 to p2. We can
easily find the equation of that line using basic algebra. Remember that p1 is the
point (x1,y1) and p2 is the point (x2,y2). The spline segment, since it is a line, is
of the form y=mx+b. This line segment goes through p1 and p2, hence these two
equations have to verify:

y1=mx1+b

y2=mx2+b

We have two equations and two unknowns (m and b), so we can solve for m and
b. Note that this equation can be represented in matrix form:

y1

y2
.x1

x2

1

1

m

b

This form will be more interesting for higher degree splines, so we will use this
notation from now on. Using linear algebra, we can solve to the (m,b) column
vector above and we then know the spline segment from p1 to p2. One of the
many problems with this spline is that it's not very smooth. How do we express
smoothness? We use the principle of continuity.

A curve is said to be in C1 continuous if its first derivative is continuous. A curve
is in C2 if its second derivative is continuous. Generally speaking, a curve in Cj's
jth derivative is continuous. For completeness, we let C0 be the family of curves
which are continuous.

Smoothness can be expressed as continuity. The spline we made above is in C0,
but not in C1. (Indeed, at control points, the slope changes abruptly, hence the
first derivative is not continuous).

52



A  very  important  note:  all  polynomials  are  in  C¥,  that  is,  they  can  be
differentiated  infinitely  many  times.  Therefore,  if  our  spline  is  made  of  one
polynomial, it  is inherently very smooth. The problem is, splines aren't  exactly
polynomials, they're polynomial segments glued together. However, if you look
only  at  one  segment  of  the  curve,  excluding  its  endpoints,  then  it's  in  C¥.
Therefore, the only thing that might make it less than C¥ is what happens at the
endpoints of curve segments.

To illustrate this, we will now create a quadratic spline which is in C1. Since we
will  be using this spline repeatedly in our examples,  we will  name it  the Zed
splineThis is how we define the curve segment from p[i] to p[i+1]:

1- the quadratic goes through p[i]

2- the quadratic goes through p[i+1]

3- at p[i], the slope is the same as whatever the previous spline segment has at
that point.

Assume  the  previous  curve  segment  was  y=A[i]x2+B[i]x+C[i].  Then,  the
derivative of that curve segment is:

y'=2A[i]x+B[i]

And at p[i], the derivative is:

y'[i]=2A[i]x[i]+B[i]=K (*)

The new curve segment is y=A[i+1]x2+B[i+1]x+C[i].  It goes through p[i]  and
p[i+1] hence:

y[i]=A[i+1]x[i]2+B[i+1]x[i]+C[i+1]

y[i+1]=A[i+1]x[i+1]2+B[i+1]x[i+1]+C[i+1]

Its derivative at y[i] is

y'[i]=2A[i+1]x[i]+B[i+1]=K (K comes from (*))

We can re-write these three equations as:

yi

yi 1

K

.

xi
2

xi 1
2

.2 xi

xi

xi 1

1

1

1

0

Ai 1

Bi 1

Ci 1 ¨

53



Then we can solve for the (A,B,C) vector.

There is still the question of generating the very first spline segment, since there
is no such thing as "previous spline segment's slope at p[1]" (we'll have a hard
time computing K). One solution is to let the first spline segment be a quadratic
that  interpolates  through  p[1],  p[2]  and  p[3]  exactly.  Then  the  second  curve
segment  will  maintain  the same slope as the first  curve segment  at  p[2],  and
interpolate through p[2] and p[3].

Parametrized splines

As of now, our splines are functions, that is,  they cannot curl backwards very
easily. Infinite slopes are impossible. That and other things lead us to parametric
splines.

Right now, we have y as a function of x.  We will  now replace this with y a
function of t, and x a function of t. Then we plot all points (x,y) for some values
of t and we get the desired spline. We use t as a variable name because it can
sometimes be useful to think of the spline as an (x,y) point moving in time. For
example,  a  spaceship's  movement  could  possibly  be  described  as
(x,y,z)=(f(t),g(t),h(t)), a function of time for each coordinate. The key point here
is that this allows us to extend splines to any number of dimensions elegantly.

The control  points  are  now of  the  form (x,y,t)  or  (x,y,z,t),  depending on the
number of dimensions we want. A parametric quadratic spline segment in 2d, for
instance, would be something of the form:

x=At2+Bt+C

y=At2+Bt+C

We just take each component individually and make it a spline as a function of
time.  For  example,  if  we  have  the  control  points  (x0,y0,z0,t0)  (x1,y1,z1,t1),  ...,
(xn,yn,zn,tn). Then, we look at x as a function of t, and make it a spline with the
control points (x0,t0), (x1,t1), (x2,t2), ..., (xn,tn). We do the same for y as a function
of  t,  with the control  points (y0,t0),  (y1,t1),  ...,  (yn,tn),  and similarly for  z as a
function of t.

Uniform splines

54



Uniform  splines  are  a  special  breed  of  splines  which  the  control  points  are
regularly spaced in a special way. That is, a spline of the form (x,f(x)) where the
control points are (0,y0), (1/(n-1),y1), (2/(n-1),y2), ..., (1,yn) are called uniform.
Notice that the control points x components are uniformly distributed between 0
and 1.

Uniform splines have special uses. When we want to specify an object's position
at  an  instant  with  a  parametric  spline,  we  want  to  be  able  to  specify  the  t
component  exactly.  However,  when we're more interested in  the shape of  the
spline, the t component matters less and we use uniform splines.

Now look back at the equation marked ¨ for the Zed spline a few pages back. In
the case of a uniform Zed spline, we can substitute the values x0=0 and x1=1,
since there are but two control points. Then we get:

A

B

C

.
0

1

0

0

1

1

1

1

0

1 yi

yi 1

K

=

0

1

0

0

1

1

1

1

0

1 1

0

1

1

0

0

1

1

0

=M G

yi

yi 1

K

A

B

C

.M G

The column vector G is called the geometry vector. The product of M and G can
be viewed as a linear transformation of the vector G, thus the matrix M is called
the basis matrix for the Zed spline. A basis matrix completely defines a uniform
spline type, and along with a geometry vector, it defines completely a specific
spline.

To illustrate a few additionnal  properties,  we need a second type of quadratic
spline. We will call it the Baker spline, and it is defined by two control points p0
and p1, and a constant J as follows:

1- The spline interpolates through p0

2- The spline has a slope of J at p0

3- The spline has, at x1, a slope of whatever slope the vector p1-p0 has

Now, let us see what these three constraint imply. First, let us notice that since it
is a quadratic spline, it is of the form y=Ax2+Bx+C. Hence, y'=2Ax+B. Then:

55



1- means that y0=Ax02+Bx0+C. Since the spline is uniform, x0=0 and y0=C.

2- means that J=y'(x0) or J=2Ax0+B or J=B

3-  The  slope  of  p1-p0  is  m=(y1-y0)/(x1-x0)=(y1-y0)/1.  We  want
m=y'(x1)=y'(1)=2A+B. Hence, y1-y0=2A+B

Combining these, we find that

2A+B=y1-y0

2A=y1-y0-J

A=y1/2 - y0/2 - J/2

We can write this in matrix form as:

A

B

C

.

1
2

0

1

1
2

0

0

1
2

1

0

y0

y1

J

N

1
2

0

1

1
2

0

0

1
2

1

0

N  is  the  basis  matrix  for  the  uniform  Baker  spline.  Now,  given  a  specific
geometry vector for a Baker spline, maybe we want geometry vector for a Zed
spline which will generate the exact same spline. This is computed using a change
of basis. Let M be the Zed spline basis matrix, N is the Baker spline basis matrix,
V is the geometry vector for the Baker spline and G is the geometry vector for the
Zed spline. K is the (A,B,C) vector of the coefficients of the quadratics. Then we
have these equations:

K=MG or G=M-1K

K=NV

Therefore,

G=M-1(NV) or G=(M-1N)V

Let L=M-1N then

G=LV

56



L is  called  the transition  matrix  from Baker  spline  to  Zed  spline.  This  is  all
nothing but linear algebra. L is a transform from one space to another space, there
is nothing more to it.

Examples

Here follows an example calculation for one segment of a parametric nonuniform
quadratic spline. Note that this spline is not of the Zed type. This is merely a
parametric quadratic spline which interpolates through all 3 control points.

x1

x2

x3

.

t1
2

t2
2

t3
2

t1

t2

t3

1

1

1

J1

J2

J3

y1

y2

y3

.

t1
2

t2
2

t3
2

t1

t2

t3

1

1

1

K1

K2

K3

x .J1 t2 .J2 t J3 y .K1 t2 .K2 t K3

These are all the equations we need. Next, given the control points x1, x2 and x3, y1, y2 and y3 at 
times t1, t2 and t3, we can solve for J and K.

J1

J2

J3

.

t1
2

t2
2

t3
2

t1

t2

t3

1

1

1

1
x1

x2

x3

Similarly for K. Now let us give ourselves sample control points:

x ( )0 2 1 y ( )2 3 5 t ( )1 4 5

x .5
12

t2 .11
4

t 7
3

J

5
12

11
4

7
3

K

5
12

7
4

10
3

y .5
12

t2 .7
4

t 10
3

Now, let us plot the spline:

57



And now, an example Baker spline.

58



The uniform Baker spline will be defined by its geometry vector V:

That is, p1=(0,1), p2=(1,3) and slope at p1 is .5. Slope at x=1 will be the slope of p2-p1, 
or 2.V

1

3

.5

A

B

C

.

1
2

0

1

1
2

0

0

1
2

1

0

1

3

.5

0.75

0.5

1

The spline is defined by the quadratic y=Ax^2+Bx+C:

y ..75 x2 ..5 x 1

0 1 2
1

2

3

..75 x2 ..5 x 1

x

Note that the spline goes trough p0=(0,1) and apparently has a 
slope of 2 at x=1. This is verified because y'=1.5x+.5, thus y'(1)=2.

Now to get the equivalent geometry vector for a Zed spline. First find the transition matrix L:

*L .
1

0

1

1

0

0

1

1

0

1 1
2

0

1

1
2

0

0

1
2

1

0

=L

1

0.5

0

0

0.5

0

0

0.5

1

The geometry vector G for the equivalent Zed spline is:

G .L

1

3

.5
Looking back at the definition of the Zed spline, this defines a spline that goes 
through (0,1) and (1,2.25), which is correct, and has a slope of .5 at x=0, which is 
also correct.=G

1

2.25

0.5

59



Frequently used uniform cubic splines

A certain number of uniform cubic splines very useful for various reasons, mostly
modelling curves. Some of these will be described here. The Hermite spline is
defined by four two control points P1 and P2 and 2 slopes vector S1 and S2.
Bézier  splines  are  defined  by  4  control  points  P1  through  P4  and  uniform
nonrational  B-splines  are  also  defined  by  4  control  points,  with  different
constraints however.

A few general notes before we dive into the main material.  These splines are
cubics, hence they are of the form y=Ax3+Bx2+Cx+D and the derivative of such
a cubic is y'=3Ax2+2Bx+C. Often, constraints will be put on y(x) or y'(x) for
some x, which will then be used to figure out the basis matrix for the spline.

Hermite splines

The hermite spline is defined by two control points P1 and P2, and two slopes s1
and s2 as follows:

1- The spline interpolates through P1

2- The spline interpolates through P2

3- The slope at P1 is s1

4- The slope at P2 is s2

Since the spline is uniform, P1=(0,y1) and P2=(1,y2). The geometry vector G is
(y1,y2,s1,s2). We re-write the four constraints using that:

1- y1=D

2- y2=A+B+C+D

3- s1=C

4- s2=3A+2B+C

We re-write in matrix form and solve for (A,B,C,D):

60



A

B

C

D

.

0

1

0

3

0

1

0

2

0

1

1

1

1

1

0

0

1 y1

y2

s1

s2

A

B

C

D

.

2

3

0

1

2

3

0

0

1

2

1

0

1

1

0

0

y1

y2

s1

s2

Mhermite

2

3

0

1

2

3

0

0

1

2

1

0

1

1

0

0

Mhermite is the basis matrix for hermite splines.

Bézier splines

Named after the French dude Pierre Bézier (for French people are dudes). This
spline is defined by control points P1, P2, P3 and P4 as follows:

1- The spline interpolates through P1

2- The spline interpolates through P4

3- At P1, the slope of the spline is the slope of the P2-P1 vector

4- At p4, the slope of the spline is the slope of the P4-P3 vector

We re-write  as mathematical constraints,  noticing that P1=(0,y1),  P2=(1/3,y2),
P3=(2/3,y3), P4=(1,y4), the slope of P2-P1 is 3(y2-y1) and the slope of P4-P3 is
3(y4-y3). The geometry vector is G=(y1,y2,y3,y4).

1- y1=D

2- y4=A+B+C+D

3- 3(y2-y1)=C

4- 3(y4-y3)=3A+2B+C

3 and 4 can be somewhat simplified:

3- y2=C/3+D

61



4- y3=B/3+2C/3+D

We re-write this in matrix form and solve for (A,B,C,D):

A

B

C

D

.

0

0

0

1

0

0

1
3

1

0

1
3

2
3

1

1

1

1

1

1

y1

y2

y3

y4

A

B

C

D

.

1

3

3

1

3

6

3

0

3

3

0

0

1

0

0

0

y1

y2

y3

y4

Mbézier

1

3

3

1

3

6

3

0

3

3

0

0

1

0

0

0

Convex hull

The convex hull of a set S is the smallest convex set C such that SÍC. At this
point, we need a strict definition of convex sets, then we can prove existence and
uniqueness of convex hulls.

We assume a definition of line segment between x and y, such a definition can be
made strict  in  the context  of  vector  spaces over the reals.  Then,  L is  defined
simply as 

L(x,y)={tx+(1-t)y|tÎ[0,1]}

The “natral definition” of “L is the shortest path between x and y” works well
when the integral is well defined only.

Definition: A set C is said to be convex if, for ALL x,y in C, L(x,y)ÍC. (Ie, C is
convex if, for all pair of points, the line segment between them is contained in C.)

Definition:  arbitrary intersection D=ÇiÎISi.  D is the set such that dÎDÛ"iÎI,
dÎSi. Given Si and a non-empty I, D is unique. (Proof: assume that D1=ÇiÎISi,
D2=ÇiÎISi, D1¹D2. Assume without loss of generality that d is in D1 but not in
D2.  Since  d  is  in  D1,  then  d  is  in  all  S i.  Therefore,  d  has  to  be  in  D2,
contradiction. QED.) Such a set is minimal in the sense that DÍSi for all i in I.

62



Definition: Convex hull. First assume the universe U is convex (this is true for
Rn).  Then,  the convex hull  C of  an arbitrary  set  S  is  defined as  ÇCa,  where
K={Ca} is the set of all convex supersets of S. Since S is in U and U is convex, U
is an element of K, thus the intersection exists and is unique. It is also minimal.
All we have to prove is that C is convex. But this is trivial, as we are about to
show. Take an arbitrary pair of points x, y in C. We have to prove that L(x,y) is a
subset of C. Since x and y are in C, x and y have to be in Ca for all a. Since Ca is
convex, this means that L(x,y) is in Ca for all a. Therefore, L(x,y) is in C. This is
true for any x,y in C, thus C is convex.

As an example,  a triangle is its own convex hull.  For a concave polygon, the
convex hull is the smallest convex polygon that completely includes the concave
polygon.

Now on to  convex sums.  A convex sum is a weighted sum  å1£i£nwiyi such that
å1£i£nwiyi=1  and  wi is  non-negative.  A  convex  sum  is  so  called  because  the
resulting sum is in the convex hull of its control points yi,  as we are about to
prove.  We  will  here  use  a  proof   by  induction.  Let  us  first  articulate  the
proposition we are about to prove.

Pi=“The sum Si =å1£j£iwjyj where the weights wj are positive and sum to 1 lies
within the convex hull of the control points yj.”

P1 translates into w1y1, where w1 is positive and w1=1, is in the convex hull of y1,
which  trivially true.

The  next  step  is  to  demonstrate  that  PiÞPi+1.  Now  let  us  examine  Pi+1.
å1£j£i+1wjyj=å1£j£iwjyj+wi+1yi+1.  Let  K=å1£j£iwj.  We  know  that  K<1  since  all
weights are positive and add up to 1. We can scale up Si by 1/K (call that Q).
Then, by hypothesis of Pi, Q is in the convex hull of the y1 through yi. However,
Si+1=KQ+wi+1yi+1 and K+ wi+1=1. Thus Si+1 is on the line between Q and yi+1. Since
both Q and yi+1 are in the convex hull of y1 through yi+1, the line between Q and
yi+1 is in the convex hull. Thus Si+1 is in the convex hull. By induction, Pi is true
for all i, which completes the proof.

Bernstein polynomials

The nth degree Bernstein polynomial, Bn(x) is defined by n+1 control points y0,
y1, y2, ..., yn as follows:

Bn(x)=å0£i£nC(i,n)xi(1-x)n-iyi where C(i,n)=n!/[i!(n-i)!]

n! is the factorial of n, is 1´2´3´4´...´n. As an example, 6!=720. As per the
definition above, C(3,5), for example, would be 5!/(3!2!)=10.

63



At this point in time,  it  is useful to view the spline as a weighted sum of its
control points. Looking at Bn(x) as above, we can see that for a fixed x, we are in
effect  taking a  weighted  sum of  the yi’s:  å0£i£n wiyi.  Let  us now examine  the
weights.

A weight wi=C(i,n)xi(1-x)n-i as above can be interpreted probabilistically using the
binomial distribution. If we are repeating an experiment n (independant) times,
each  time  with  probability  of  success  x,  then  wi is  the  probability  of  the
experiment succeding exactly i times. Then, it becomes obvious that å0£i£n wi =1
(the sum is simply the sum of the probabilities of all possible outcomes, which
has to be one).

Going back to Bn(x), we can now say that the Bernstein polynomial is a convex
sum of its control points. A convex sum is when the sum of the weights is one ad
each weight is positive (as is the case here). It is so called because then the result
will be in the convex hull of the control points. Of particular interest to us is the
B3(x) polynomial. It can be written down as follows:

B3(x) =y0(1-x)3+y13x(1-x)2+y23x2(1-x)+y3x3

=y0(1-3x+3x2-x3)+y1(3x-6x2+3x3)+y2(3x2-3x3)+y3x3

=x3(-y0+3y1-3y2+y3)+x2(3y0-6y1+3y2)+x(-3y0+3y1)+y0.

It is obvious from this last form that we have just found an equivalent definition
to  the  Bézier  spline.  With  the  work  we  have  just  accomplished,  we  have
demonstrated that a Bézier spline lies within the convex hull of its control points,
which is an important property, as we will see later.

Uniform nonrational B-spline

The uniform nonrational B-spline is defined as a cubic polynomial spline which
has C2 continuity everywhere even when several B-spline segments are put in
sequence. The term nonrational refers to the fact that we are dealing here with a
conventional  polynomial,  as opposed to  a  quotient  of  polynomials.  A rational
spline is defined by the quotient of two polynomials.

The B-spline is  defined by 4 control  points  P1,  P2,  P3,  P4.  However,  let  us
examine exactly how we should use these to make certain that consecutive B-
splines are C0, C1 and C2 continuous. That is, say we have 6 points P0, P1, P2,
P3, P4 and P5. Then, the B-spline defined by P1, P2, P3 and P4 is the one we are
interested in, let's call it segment S2. However, there is a spline segment defined
by P0, P1, P2, P3, which we will call S1. We want S1 and S2 to have C0, C1 and
C2 continuity at their joint. Furthermore, there is a spline defined by P2, P3, P4
and P5, which we name S3, and we want S2 and S3 to have C0, C1 and C2
continuity at their joint.

64



This section in progress, I can't find a justification for the B-spline basis matrix.

Catmull-Rom splines: a non-uniform type of spline

This spline type is defined as follows (given four control points P0 through P3

(x0,y0), (x1,y1), (x2,y2) and (x3,y3), xi are increasing):

1- The spline interpolates through (x1,y1).

2- The spline interpolates through (x2,y2).

3- The spline’s slope at x0 (the second control point) is whatever slope the line
from the first to the third control point is.

4- The spline’s slope at x1 (the third control point) is whatever slope the line from
the second to the fourth control point is.

The spline segment thus defined is for the [x1,x2] segment. If a similar spline is
defined with the control points P1, P2, P3, P4, then they will join at P2 and their
first derivative will agree, giving it a smooth appearance. Writing the restrictions
expressly in equation form, we get:

1- y1=Ax1
3+Bx1

2+Cx1+D.

2- y2=Ax2
3+Bx2

2+Cx2+D.

3- y’(x1)=3Ax1
2+2Bx1+C=(y2-y0)/(x2-x0).

4- y’(x2)=3Ax2
2+2Bx2+C=(y3-y1)/(x3-x1).

65



Rendering

Introduction

Rendering  is  the  phase  where  we  do  the  actual  drawing.  There  is  a  general
tendency to download this particular task to a slave graphics processor and leave
the CPU to do better things. However, it will always be useful for everyone to
have a general understanding of how things work. And also likely is the fact that
we're going to need software renderers for a while more. And one last fact is that
people have to write the software for the slave processor.

We will  first  study the drawing of  a point,  which will  be used to draw other
primitives. Then we will study lines and polygons. Curved surfaces can also be
supported but will not be discussed. The curved primitive that tend to be faster in
drawing  are  conics  and  polynomials.  However,  some  other  forms  of  curved
primitives definitions are often preferred, mainly splines.

The point

A geometric point is a 0 dimensional object. It could also be defined very strictly
with neighborhoods and somesuch. However, this is not particularly useful to the
computer graphics specialist. One thing that we must remember, though, is that it
is impossible to display a point on any medium. Quite simply, a point has a size
of zero, no matter if the definition of size is length, area or volume. It cannot be
seen under any magnification.

What the computer graphics expert usually refers to as the point is the smallest
entity  that  can  be  displayed on  the  display  device.  These  are  not  necessarily
circular or rectangular things - and more often than not, they are slightly blurred.

We will refer to this point as a  pixel. We will also need to make a few basic
assumptions.  Generally  speaking,  pixels  are  of  an  arbitrary  shape  (often
rectangular-like), and are aligned in a very structured way on the display device.
Note that some devices do not use this method of displaying things,  these are
commonly referred to as vector devices. There was an old Star Wars (trademark
of LucasArts I believe) game made with one of these.

66



We will also very much like pixel to be aligned in a cartesian plane like manner.
We generally assign pixels integer position, and what's not exactly on a pixel has
a  noninteger  position.  But  what  is  the  position  of  the  pixel?  That's  another
entirely  arbitrary  matter.  Generally  speaking,  we  might  want  to  simplify  the
pixel's location to its centroid. Also, there is the problem of axis orientation. For a
combination of arbitrary and historical reasons, the screen coordinates origin is
very usually centered on the upper left corner and goes positively down and right
in hardware. Operating sometimes hide that from the user application and use a
coordinate system centered on the lower left  corner,  and go positively up and
right, just like the usual cartesian plane.

The  way  that  pixels  are  stored  internally  is  also  of  importance.  Generally
speaking, each pixel is assigned a color, and the number of colors available per
pixel is defined by the number of bits allocated to each pixel. For instance, if each
pixel has 6 bits of color data to it, then each pixel can be one of 64 colors. When
a "strange" number of bits per pixel is used, it  often happens that the bits are
spread in a less intuitive way. For example, in the 6 bit case, instead of using one
byte per pixel and wasting 2 bits per pixel, the system will likely store bit 0 of all
pixels, then bit 1 of all pixels, then bit 2 of all pixels, and so on. This is called a
bit-plane arrangement.

If the number of bits per pixel is closer to 8, 16, 24 or 32, then some systems will
allow what is generally referred to as a linear arrangement of pixels. For example,
if 8 bits are allocated per pixel, then one byte corresponds to one pixel.

It is generally accepted that with 24 bits per pixel, the human eye cannot see the
difference  between  two  very  similar  shades  of  the  same  color.  (High  end
platforms today use 16 bits per component, including a so-called alpha channel,
for a possible total of 64 bits, but this is to minimize roundoff when combining
several images together, for instance.) However, 24 bits per pixel is roughly 16
millions of colors. Thus, when using a mere 6 or 8 bits per pixel, sacrifices must
be made.

One way that the industry has found is to make a look-up table. As an example,
each pixel is assigned a value from 0 to 255 (for 8 bits), and the hardware is given
a lookup table of 256 color entries. Each color entry can contain a 16 or 24 bit
color for example. Then, the hardware automatically substitute the proper entry in
the table for each pixel when it has to display them. The lookup table is often
referred to as the palette or color map.

67



At any rate, eventually one needs a way of identifying colors, either to select the
color map colors, or in the case of a 24 or 32 bits system, select the pixel color.
There are several ways of doing this. Two of the most popular means are RGB
colors and HSV colors. RGB is an acronym for red, green and blue. Colors are
specified  by  their  red,  green  and  blue  contents.  It  is  interesting  to  note  that
displays usually do not use red, green and blue, but colors that are close to these.
The colors actually  used by the displays were selected to allow for  a broader
range of colors.

Another popular means of selecting a color is with HSV values. This is another
acronym  that  stands  for  Hue,  Saturation  and  Brightness  (isn't  that  last  one
obvious?) This model is more intuitive than the RGB model for  most people.
Other  models  include  the  CMY  (Cyan,  Magenta  and  Yellow)  and  YIQ
(Luminance and Chromaticity) models.

Writing to a specific pixels usually involves finding an address and then putting a
value in it. Since memory is usually mapped in a one dimensional fashion, device
pixels are mapped in an arbitrary way to memory. Usually,  finding a memory
location  for  a  pixel  involves  a  multiplication.  However,  multiplications  are
typically expensive, thus we might want to look into that a bit  further.  Let us
assume a 800x600 display, with 8 bits per pixel and linear mapping.

A base address A has to be given for the top-leftmost pixel (assuming origin is at
top-left). Then, the first row of 800 pixels would be the next 800 bytes. Then next
row of 800 pixels would follow and so on. Generally speaking, pixel (x,y) for an
integer x and y can be found at memory location A+x+y*800. Note that some
systems will want to pad each row with a few bytes sometimes.

Multiplying  once  per  pixel  write  is  a  bit  expensive.  There  are  several
workarounds.  The  first  one  is  straightforward  but  hardware  dependant.  The
second one assumes that we access pixels in a coherent way (not totally random).

If  the  width  of  the  display  device  in  pixels  is  known  in  advance,  the
multiplication can be removed the following way. Say the pixel to be addressed is
at  memory  location  A+x+y*800.  800  is  512+256+32,  thus  we  have
A+x+y(512+256+32)  =  A+x+512y+256y+32y.  However,  512=29,  256=28 and
32=25 Thus,  the  pixel  memory  location  is  A+x+29y+28y+25y.  Note  that  a
multiplication by a power of two can be optimized out with left shifts, which are
typically much faster than multiplications. Let a<<b denote a shifted left  by b
bits, then the memory location of the pixel can be expressed as:

A+x+y<<9+y<<8+y<<5.

Similar decompositions in powers of two of various scalars can be found. The
problem with this is that it requires the scalar (display device width in pixels) to
be hard-coded in the program.

68



Another way of accessing pixels is by exploiting coherence. If we plane to access
all the pixels on a given scanline, starting from left to right, then the following is
true.

Pixel at memory location A+y*width is the leftmost pixel on the scanline. The
second leftmost value is the above value plus one. The third one can be found by
adding one again,  and so forth.  Thus,  accessing pixels that  are  adjacent  on a
scanline can be done in one add per pixel only.

Accessing pixels that are on the same column is similar, except that <width> is
added each time to the memory location.

Lines

There are a number of ways to draw lines. Generally, they all boil down to the
same basic ideas, and have roughly comparable speeds. The algorithm presented
here is the one I felt had the best mixture of simplicity, efficiency and small size.
It has the disadvantage of being less exact than some other algorithms for lines of
rational slopes. We will first start with special cases, then move to more general
cases.

The  simplest  lines  to  draw  are  the  horizontal  and  vertical  ones.  As  can  be
imagined easily by the reader from the last section, we start with the topmost or
leftmost pixel, draw it, then either add 1 or <width> to memory location and draw
the next pixel. And so on, for the length of the line.

The next step up is an angled line. If the line is not vertical nor horizontal, then it
can be expressed as y=mx+b or x=ny+c, with n=1/m and c=-b/m, whichever is
preferred.  The representation  one has to  use is  whichever  of  the  two has  the
smallest m or n. This is to ensure that there are no large gaps between the pixels
of a line. Afterwards, we initialize (x0,y0) to be one endpoint of the line. If we
chose y=mx+b, we should be using the leftmost endpoint for (x0,y0). We draw
(x0,y0),  then increment x, and add m to y. Then we draw the new point. The
extension to the x=ny+c form is left to the reader.

Notice  that  the  previous  paragraph  is  simply  an  application  of  forward
differencing  studied  previously.  The  witty  reader  will  easily  imagine  the
extension  of  this  to  higher  degree  polynomials.  It  is  also  possible  to  extend
incremental algorithms to circles and ellipses, amongst others, but we will not go
into this.

In some applications, such as polygon drawing, one of either y=mx+b or x=ny+c
will be preferred even if the slope is greater than 1.

69



Note that the topic of line drawing can be extended much more than this. Anti-
aliased lines, line width and patterns, endpoint shape are all topics that we will
not cover.

This  algorithm  has  the  nice  property  of  being  a  special  case  of  forward
differencing.  It's  also fast and has no comparisons in the so-called inner loop.
(Comparisons have a tendency to flush prefetch queues in CPU's, which results in
relatively long delays in the inner loop).

However  it  has the disadvantage of  accumulating  roundoff  error  at  each new
pixel.  This should not be a problem in general,  but when utmost precision is
needed,  an  alternate  algorithm  which  does  not  accumulate  error  might  be
considered.

The  algorithm  works  without  any  error  accumulation  (the  only  error  is  the
roundoff to the nearest pixel). The idea is as follows. We first observe that the
slope m is a rational of the form a/b. Let's assume m is positive and less than 1.
We can make a special case for each of the 8 octants such that this is true.

Next, let's assume y0 is of the form N+c/b, where c is some integer between 0 and
b. Then, when adding the slope to the current y, we get N+(c+a)/b. However, now
we need to check whether c+a is more than b. If it is, then we rewrite as: N+
(c+a)/b=N+(c+a-b+b)/b=N+1+(c+a-b)/b. This means that whenever c+a is more
than b, we subtract b from it and add 1 to N. The pixel coordinate in y that we
actually draw is N. (This implies that we're truncating y. If we want to round off
rather,  we can  add  0.5  to  the  original  y0,  which  will  have  the  net  effect  of
rounding  to  the  closest  integer.  The  denominator  can  be  doubled  to  avoid
roundoff in the .5). Pseudocode for this follows (integer endpoints are assumed,
this can be generalized to rational endpoints of course).

Let (x0,y0) and (x1,y1) be the endpoints of the line segment, such
that (x1,y1) is in the first octant relative to (x0,y0).
Let a=2*(y1-y0)
Let b=2*(x1-x0)
Let N=y0
Let c=(x1-x0)

for x varying from x0 to x1 by steps of one, do
putpixel(x,N)
add a to c
if c>=b then

subtract b from c
add 1 to N

end if
end for

Polygon drawing

70



Let us first define a few terms, in an intuitive and geometric fashion. A polygon
is, as can be seen above, a 2d object with area, delimited by edges. The edges are
line segments, and there is a finite number of edges.

Polygons that do not self-intersect can be said to be either  convex or  concave.
The polygon above is  self-intersecting. A convex polygon is one for which the
inside angle at any vertex is less than or equal to 180 degrees. All other polygons
are said to be concave. Sometimes, it is said that a particular vertex is concave,
which is not entirely correct, but rather means that the inside angle at that vertex
is more than 180 degrees.

What interests  us most is filled primitive.  It  is relatively easy to draw a wire
frame polygon using only line drawing routines described previously (hidden line
removal then becomes a problem).

The star-shaped polygon shown above is very interesting to us because it exhibits
the more interesting properties we want our polygons to have. The grayed areas
are considered to be inside the polygon, where the white areas are outside the
polygon. This means that the inner pentagon is considered to be outside. The rule
for determining whether a point lies inside or outside the polygon is as follows.

To determine if a point lies in or out of a polygon, draw a line from that point to
infinity  (any direction,  far  far  away).  Now find the number of times that line
intersects the polygon edges. If it is odd, the point is in, if it is even, the point is
out. This is called the even-odd rule by the industry. It is recommended that you
try this with the star above and note that it works no matter what point you pick
and no matter what direction you draw the line in.

The basic idea of the line polygon drawing algorithm is as follows.  For  each
scanline (horizontal line on the screen), find the points of intersection with the
edges of the polygon, labeling them 1 through n for n intersections (it is of note
that n will always be even except in degenerate cases). Then, draw a horizontal
line segment between intersections 1 and 2, 3 and 4, 5 and 6, ..., n-1 and n. Do
this for all scanlines and you are done.

Probably,  you  might  want  to  restrict  yourself  to  scanlines  that  are  actually
spanned by the polygon. Also, there are a few things to note.

If the polygon is convex, there will always be only one span per scanline. That is
generally not true for concave polygons (though it can accidentally happen).

71



Here is pseudocode for a polygon filling algorithm.

Let an edge be denoted (x0,y0)-(x1,y1), where y0£y1. Edges also 
have a "current x" value, denoted cx. Initialize cx to x0. One 
should also compute the slope of all edges, denoted s, which is 
(x1-x0)/(y1-y0) (we are using the x=ny+c representation).
Let IET be the inactive edge table, initially containing all edges
Let AET be the active edge table, initially empty

Sort the IET's edges by increasing values of y0
Let the initial scanline number be the y0 of the first edge in the
IET

Repeat
While scanline³y0 of the topmost edge in the IET

Move topmost edge from IET to AET
End while

(*) Sort AET in increasing values of cx

For every edge in the AET
If edge's y1³scanline, then remove edge from AET
Else add the slope "s" to "cx".

End for

For each pair of edge in the AET
Draw a horizontal segment on current scanline between 
column "cx0" and "cx1", where "cx0" is the "cx" value 
for the first edge in the pair and "cx1" is the "cx" 
value for the second edge in the pair

End for
Until the AET is empty

It is of note that the line marked by (*) can be optimized out. If the polygon is not
self-intersecting, we just need to make sure the AET is properly sorted when we
insert a new edge into it.

It should be noted that edges that are parallel to the scanline should not be put in
the IET. You might also need to clip the polygon to the viewport, which can be
added to the polygon blitting code.

72



Visible surface determination

Introduction

One of the problems we have yet to address, when several objects project to the
same area on screen, how do you decide which gets displayed. Intuitively,  the
closest object should be the one to be displayed. Unfortunately, this definition is
very hard to handle. We will usually say that the object to be displayed will be the
one with the smallest z value in eye space, which is a bit easier to work with. A
corollary of this is that objects with the largest 1/z value get displayed, this latter
observation has applications which will be explained later.

Visible  surface determination  can be done in  a number  of  ways,  each has its
advantages, disadvantages and applications.  Hidden line removal  is used when
wire frames are generated. This might be useful for a vector display, but will not
be covered in here. When dealing with filled primitives, there are several classes
of visible surface determination. There is also the question of object precision,
device precision, and more, these topics will not be discussed here.

Perhaps the most intuitive visible surface determination algorithm is the so-called
"painter's algorithm", which works the same way a painter does. Namely, it draws
objects  that  are  further  away  first,  then  draws  objects  that  are  closer.  The
advantage of this is it's simple. The disadvantages are that it writes several times
to some areas of the display device, and also that some objects cannot be ordered
correctly.

The  painter's  algorithm  can  be  generalized  into  the  depth-sorting  algorithm,
which sort the primitives from back to front and then draw. The depth sorting
algorithm also resolves cases that painter's algorithm does not.

Another  algorithm  is  space  partitioning  trees  such  as  BSP  (binary  space
partitions) trees. The advantage of this algorithm is to generate a correct ordering
of  the  primitives  quickly  and  correctly  no  matter  where  the  viewer  is.  The
disadvantage is that it is hard to add any polygons to a scene thus rendered, or to
deform it in a nonlinear way. Approximations can be made.

73



Yet another way of doing visible surface determination is the class of algorithms
generally  referred  to  as  "scan-line  algorithms".  These  algorithms,  though
somewhat slower than depth sorting, have the advantage of drawing to each and
every pixel of the display device once and only once. Thus there is no need to
clear  the  display  in  the  first  place,  and  pixels  are  not  written  to  needlessly.
Incidentally,  this  algorithm  is  very  useful  for  display  devices  where  it  is
impossible  or  difficult  to  erase  or  rewrite  to  pixels,  such  as  printers.  The
disadvantages are that it's slightly slower, and usually quite more messy to code
than a depth sorting algorithm. Also, visible surface determination becomes an
integral  part  of the polygon drawing routine in most cases, making it  hard to
download  the  polygon  drawing  code  to  some  hardware,  or  to  make  several
versions of polygon drawing code for different drawing modes.

A very popular way of doing visible surface determination is called z-buffering.
This works by storing the z value whatever occupies a pixel for each pixel. This
way, one can add new primitives to a scene, visible surface determination is just a
compare away. Incidentally, it is usually much more efficient to use 1/z values
than it is to use z values, since 1/z varies linearly but z does not.

Another  algorithm worth  mentioning  is  the  Weiler-Atherton  algorithm,  which
clips  primitives  so  that  they  do  not  intersect  before  drawing,  and  Warnock's
algorithm,  which  recursively  subdivides  the  display  area  until  it  can  trivially
determine which primitive to draw. These algorithms are fairly slow.

An optimization that can be made to any visible surface determination algorithm
is back-face removal or back-face culling. This is based on the observation that
faces that are facing away from the observer

As of  now,  the only algorithms discussed will  be the depth sort  and painter's
algorithm, along with z buffering and back-face culling..

Back-face culling

Back-face culling exploits the observation that a face in a  closed polyhedron
always has two sides. One faces inside, and can never be seen by an observer
outside  the  polyhedron  (rather  obviously  since  the  polyhedron  is  closed),  the
other faces outside and can be seen. However, if it is determined that the side
facing  the eye is  the inside of  the  face,  that  face will  assuredly  not  be seen,
because it is impossible to see a face from the inside.

74



The side that faces the eye can be determined easily with  dot product. Take a
vector V from the eye to any point within the polygon (for example, from the eye
to a vertex). Let A be the normal of the polygon, assuming that A points outwards
of the polyhedron. Then, compute V·A. If it is positive, the inside of the face is
towards the camera, do not display or transform the face. If it is negative, the face
is facing the camera and might be seen (though this is not guaranteed).

Back-face culling is generally not sufficient for visible surface determination. It is
merely used to remove faces that assuredly cannot be seen. However, it will do
nothing for faces that are only obscured by faces that are closer. Also, back-face
removal assumes that the objects are closed polyhedra, and that faces are opaque.
If this is not the case, back-face culling can not be applied.

Note  that  if  the only  thing  displayed is  a  convex object,  back-face culling  is
sufficient for visible surface determination (it will only leave the faces that are
actually visible).

Also note that back-face removal should be done in object space, not in world or
eye space. That's because, in order to do it in world space, one has to transform
all  plane  normals  before  doing  the  dot  product,  which  is  rather  expensive.
However, if performing the culling in object space, one only needs the location of
the eye in object space, and normals need not be transformed.

It  can be shown that back-face culling is expected to cull  roughly half  of the
number of vertices, faces and edges in a scene, except for special scenes that are
made to be viewed from a particular angle or somesuch.

Sorting

With the painter's algorithm, one has to assign a z-value to all primitives. Then,
the primitives are sorted according these values of z, and the resulting image is
drawn back-to-front. Several sorting algorithms can be used for this purpose, and
even though basic algorithms is not the subject of this document, we will discuss
two simple sorting schemes now.

The simplest sorting algorithm, and a frightfully slow algorithm in most cases, is
the bubble sort. Here follows pseudocode for the bubble sort.

Let z[1..n] be the array of n values to sort
Let f be a flag

Repeat
Clear f
For i varying from 1 to n-1

If z[i]>z[i+1] then
Set f

75



Exchange z[i] and z[i+1]
End if

End for
Until f is clear

As can be seen, the algorithm is exceedingly simple. For small values of n (say,
n<10), this algorithm can be used and will be close to optimal. However, if the
list is very badly ordered initially, the sort could take up to n2 iterations before
finishing.

Small  improvements can be made to  the algorithm.  For  one thing,  instead of
always scanning in the same direction (from the first element to the last),  one
alternates directions, sorting an already close to sorted list is very efficient. The
loop will execute roughly n times (actually, it would execute k times n, where k is
some small constant). In the worse case though, it still executes in n2 iterations.

A second, more clever algorithm that works well on numbers, is the radix sort.
This sort can be done in any base (useful bases for a computer would be 2, 16 or
256, because they're powers of two). However, for the sake of simplicity in this
example, we will use base 10.

Using  base  n,  n  buckets  are  created  (in  our  example,  10  buckets),  labeled  0
through n-1 (0-9 in our example). Then, the numbers to be sorted are put in the
bucket that corresponds to their lower digit.  The buckets are concatenated, and
the step is repeated for the next lower digit. An so on, until we get to the highest
digit,  at  which point  we stop.  The result  is  a sorted list.  Pseudocode is given
below for base n. Note that the ith digit of base n number z is (z div ni)%n where
div stands for integer division, truncating off any fractions, and % is the modulo
operator, or remainder after division by n (a value from 0 to n-1 inclusive).

Let b[0..n-1] be n buckets, labeled 0 through n-1
Let z[1..m] be the m numbers to sort
Let D be the largest number of digits used

For foo varying from 0 to D-1 inclusive, do
For i varying from 1 to m inclusive, do

Put z[i] into its bucket, namely b[(z[i]/nfoo)%n]
End for
Concatenate all buckets, in order from 0 to n-1, back into z

End for

Note that division and modulo operations, when done with base two divisors, can
be implemented strictly with bit shifts.

This  algorithm can be implemented with  lists or  arrays.  Lists  ensure that  no
unnecessary copying is done, and allow buckets to grow dynamically. This is not
so easily accomplished with arrays, but the pseudocode below essentially does
that. It only needs to be repeated for every byte in the numbers to be sorted.

76



Let i[0..256] be 257 indices, initialized to 0
Let z[1..m] be the m numbers to sort
Then o[1..m] will be the m numbers once concatenated

Comment: The first step we take is to count the elements that will
go into each bucket

For j varying from 1 to m inclusive, do
Let foo be the bucket to which z[j] belongs
Increment i[foo+1]

End for

Comment: now compute the index at which buckets start

For j varying from 1 to 255 inclusive, do
Add i[j-1] to i[j]

End for

Comment: lastly, put the numbers into the bucket and concatenate

For j varying from 1 to m inclusive, do
Let foo be the bucket to which z[j] belongs
Put z[j] into o[i[foo]]
Increment i[foo]

End for

Other sorting algorithms that might be of interest include the  quick sort,  heap
sort, insertion sort and merge sort. These will not be discussed here, they each
have their advantages and drawbacks (for a full discussion, see [2]).

Painter's algorithm and depth sorting

As  was  previously  mentioned,  painter's  algorithm  assigns  a  z  value  to  each
primitive, then sorts them, then draws them from back to front. Objects that lie
behind are then written over by objects that lie in front of them. Note that, no
matter the scheme used to select the z value for an object, primitives that have
overlap in z may be incorrectly ordered. But there is worse. Note the pathological
case below, where it  is impossible to generate a proper ordering for the three
triangles:

77



In this case, it is necessary to cut one triangle into two parts and sort the parts
individually.

A way of handling all cases is as follows. Assign a z value to all polygons equal
to the vertex belonging to the polygon that has the largest z coordinate value in
eye space. Then sort as per painter's algorithm. Before actually drawing, we need
to do a postsort stage to make sure the ordering is correct for polygons that have z
overlap.

Assuming we sorted in increasing values of z,  it  means that we need only to
compare the last polygon with the consecutive previous polygons for which the
furthest point is in the last polygon's z span. Once the last polygon is processed,
we will not touch it anymore (unless the last polygon is moved to some other
position in the list). Thus, we just consider the list to be one element shorter and
recurse the algorithm.

The steps that should be taken are as follow (P and Q are the polygons we are
comparing).

1- Check whether the polygons x and y extent overlap on screen. If they do not,
there is no need to compare the polygons. Otherwise, we are undecided (go to 2)

2- Check on what side of P's plane the eye lies. If Q lies entirely on that side of
P's plane, Q is considered to be in front of P. If Q lies entirely on the opposite
side of the eye in relation to P's plane, then P is in front of Q. If Q crosses P's
plane, we are still undecided.

3- Repeat 2 above, but with Q and P inverted.

4-  Check  if  the  polygons  overlap  on  screen  (find  whether  the  edges  of  the
polygons intersect)

Once a polygon has been moved in the list, mark it so that it is not moved again.
If one of the above steps would say that a polygon that has already been moved in
the list should be moved again, then you will have to use the last resort, clipping.
Cutting up the triangle into pieces (clipping) will be described later.

Of course, one needs not to perform all these tests if they are deemed to be more
expensive  than  clipping.  For  instance,  the  only  tests  one  could  do  is  test  for
overlap  in  z,  then  x and y on screen,  then  check for  step  2 and if  it  is  still
unresolved, simply clip the polygons and put the pieces where they belong.

When polygon ordering can not be resolved, pick one of the two polygons for
clipping plane and clip the other polygon with it. Then, insert the two pieces at
the appropriate positions in the list.

78



A very nice way of doing all these tests is as follows. Calculate bounding boxes
for z value in 3d, and u,v in 2d (screen space, after perspective transform) of the
polygon. Then, sort the bounding boxes in x, u and v. This can be done in linear
time using the radix sort algorithm (or by exploiting coherence in a comparison
sort algorithm). Then, only the polygons for which the bounding boxes overlap in
all three axis need to be checked further.

Z-Buffering

This algorithm tends to be slightly slower than painter's algorithm for low number
of polygons (less than 5000). It would appear that it would gain as the number of
polygons increases though.

The idea is to make an array of z or 1/z values, one for each pixel. As you draw a
polygon, compute the z or 1/z value at a pixel, compare it with the current value
for the pixel, and if closer, draw, otherwise, do not draw.

This algorithm has the advantage that it requires no sorting whatsoever. However,
the  algorithm  performs  one  comparison  per  pixel,  which  tends  to  be  a  bit
expensive. Also, memory requirements tend to be bigger than other algorithms.
Nevertheless, the simplicity of the implementation makes it very attractive.

As a side note on evaluating z or 1/z, the latter can be shown to be linear while
the former is not (we did this in the perspective chapter). Thus, it will likely be
preferable to store 1/z values instead of z, because they can typically be computed
much more quickly. The mathematics of that are shown below.

Let Ax+By+Cz=D be the plane equation for the polygon in eye space. Let (u,v)
denote the pixel on screen, and let the perspective projection equation be u=px/z
and v=qy/z for some constants p and q. This can be rewritten as:

x=uz/p y=vz/q

Auz/p+Bvz/q+Cz=D

z(Au/p+Bv/q+C)=D

And then, depending whether we are interested in z or 1/z, we get:

z=D/(Au/p+Bv/q+C)

or

1/z=A/(Dp)u+B/(Dq)v+C/D

79



The latter can be rewritten as

1/z=Mu+Nv+K

M=A/(Dp), N=B/(Dq), K=C/D

Thus,  1/z  varies  linearly  across  the  (u,v)  plane  of  the  display  device.  When
forward differencing is applied, calculations for values of 1/z are reduced to one
add per pixel, with a small setup cost.

Note that visible surface determination can be performed in a clever way using A-
Buffering (described in the antialiasing section).

Binary Space Partitioning

Let us assume we have the description of a scene. Let us cut the scene with a
plane P. (That is, choose a plane that splits the scene into two halves.) The crucial
point in BSP is that anything on the same side of the plane P as the observer can
not be obscured by anything on the other side of the plane P. Therefore, if we can
split the space with a plane P in a side A, in which the camera lies, and a side B,
which is the other side, then we can draw everything in B then everything in A,
and the drawing order between objects in B and A will be correct. Note that we
still need to somehow determine what is the correct order within B and A.

O bserver1

2

3

4

80



In the example above, we show the partitioning plane P with a dotted line, objects
are rectangles and ellipses, and the two areas are marked A and B. The observer is
the dark spot marked "observer". In this case, objects 1 and 2 are on the "A" side
of the P plane, therefore it is impossible for them to be obscured by any object in
the  B side  (namely  objects  3  and 4).  This  is  true  no matter  where  in  A  the
observer lies. The observer can be anywhere in the A region and objects 1 and 2
will never be obscured by objects 3 and 4 for the observer.

However this is still  not sufficient.  We still  need to have a drawing order for
objects in the A region and objects in the B region. Therefore,  we recurse the
algorithm and split  the A region into two sub regions for  which the ordering
becomes unambiguous and similarly for the B region, as seen below:

O bserver1

2

3

4

Now there are four regions, A, B, C and D. Space is partitioned at the root by P.
Then,  the  two resulting  subspaces  are  partitioned  by p1 and p2.  This  can be
represented by the following tree:

When we want to get a drawing order for objects 1, 2, 3 and 4, we traverse the
tree as follows:

a) Start with the root P, find on which side of the plane the observer lies. That is
the AB side. The opposite side is the CD side. So first, draw the CD side, then the
AB side.

b) Draw CD side. Find on which side of p2 the observer lies. The observer
is on the C side of p2, the opposite side is D. So first draw D then draw C.

81



c) The D side has only one object, draw it (so we draw object 4
first)

d) The C side has only one object, draw it (the second object we
draw is object 3)

e) Draw the AB side. Find on which side of p1 the observer lies.  The
observer is on the A side of p1, so first draw the B side then the A side.

f) The B side has only one object, so draw it (the third object we
draw is object 1)

g) The A side has only one object, so draw it (the last object we
draw is object 2)

The drawing order generated by this algorithm is therefore 4,3,1,2. This ordering
is correct.

Sometimes it might be impossible to find a plane that neatly splits space into two
sections. When this happens, you can just pick any plane and slice objects apart
with it. That is, if a plane intersects an object, slice the object into two sub-objects
that do not intersect the splitting plane.

If we have a planar object that is exactly on the splitting plane, then the drawing
order can be tweaked slightly to draw it:

1) Draw everything that's on the opposite side of the plane from the observer as
usual

2) Draw everything that's on the plane

3) Draw everything that's on the same side of the plane as the observer as usual

If the observer is on the splitting plane, the drawing order is not important.

For  polyhedral  objects,  this  can  be  used  efficiently  as  follows.  Instead  of
arbitrarily  picking  planes  and  splitting  space,  pick  a  polygon's  plane  as
partitioning plane.

When generating a BSP, you get a binary tree representation of your scene. If you
used the planes of the polygons as partitioning planes, you have an additional
mild bonus. The leafs of the tree are either inside the polyhedron or outside. That
is, the regions in space described by the leafs of the tree are either totally outside
the polyhedron or totally inside it. This can be used for simple collision detection
of  polyhedron  with  points,  even  though  it  is  not  always  efficient  to  do  so.
(Efficient collision detection is beyond the scope of this text. For a good starting
point, see [4]).

82



All this brings up the subject of generating an optimal BSP tree. There are many
problems with that. The first is the definition of optimal. In the collision detection
case (which is  not  too efficient  anyway,  but  deserves mention),  optimal  often
means shallowest tree. For visible surface determination, minimizing the number
of  triangle  clipping  is  important,  as well  as minimizing  the number  of  nodes
(which is a consequence of clipping). In both cases, the problem turns out to be
extremely  hard (NP-Hard).  In  the "minimizing the tree depth" field,  a greedy
algorithm that picks the plane that splits space as evenly as possible might do
well. However, when trying to minimize the number of polygon clips, it's harder
to get good heuristics.

Merging BSP trees is also a very tough problem. Basically it's at least as hard as
generating a new BSP tree from scratch. However, it is possible to cut corners.

If  we  have  a  very  large  maze-like  scene  (for  example),  and  a  small  object
navigating through it, we can do as follows. We treat the small object as a point,
just like the observer, and traverse the BSP tree of the maze scene to find where
the "punctual" object belongs in the BSP tree. Once we have found it, we insert
the "punctual" object's BSP tree at that point in the maze BSP tree. This will work
relatively well so long as the small object dos not come close enough to corners in
walls to cause ambiguities in the display ordering.

It is also possible to insert several objects this way in the maze BSP.

This algorithm can be very efficient if we have many objects spread over a large
area  where  inter  object  ordering  can  be  determined  easily,  but  the  objects
themselves are complex so intra object visual surface determination is nontrivial.

Note that a BSP can be processed through an affine transform and still remain
valid  if  proper  care  is  taken.  This  means  that  we  can  move  a  binary  space
partitioned object around, or we can move the observer in the BSP object (these
two are equivalent anyway) without fear of the algorithm crumbling. Therefore, it
is possible to have a few flying BSP objects at the same time, for instance.

83



Lighting models

Introduction

After all we have covered, we still have to decide how much light gets reflected
off things and such, and how it gets reflected. For example, some objects that are
facing towards a light source will appear much more bright, perhaps with a very
brilliant  spot  somewhere,  than  objects  facing  away from it.  Objects  also  cast
shadows, which are much harder to compute. We might also want to somehow
take into account that a certain quantity of light bounces off everything and lights
up things equally from all directions.

Furthermore, we might want to vary the intensity of light across a given polygon,
especially if these polygons are big. If not, one gets a somewhat ugly effect called
mach banding where the contrast between faces gets amplified by our brain and
eyes. This will raise the question of how the light should vary across a polygon,
and why.

The first part discusses actual lighting models, and the second discusses shading
algorithms for rasterization of nonuniformly shaded polygons.

Lighting models

The most basic idea we can have is to make light intensity a function of the angle
between the direction of the light rays from the light source to a point, and the
normal to the point. This is called diffuse lighting. This means that light reflects
off  the face equally in all  directions,  so the direction in which the eye is not
relevant.

Looking back on the vector algebra chapter, we had a definition of angle with the
dot product. This is written as:

Cosq=A·B/(|A|´|B|)

84



If A is the plane normal (of unit length), then |A| is 1 and can be removed from
the equation. B would be the vector from light source to point to be lit. Then, we
make light intensity a function of Cosq, which is calculated to be A·B/|B|, which
is fairly easy to calculate. Note that if q is less than p/2, it means that the face is
actually facing away from the light source, in which case it should not receive
any light from that light source. This can be recognized when A·B/|B|>0.

Usually, one makes the intensity of the light received from a light source A·B/|B|
times some negative constant (since positive values of A·B/|B| mean that the face
is facing away and that intensity is then 0).

One might want to take into account the fact that light usually diminishes the
further  away  you  are  from  a  light  source.  Physics  say  that  light  intensity  is
inversely proportional to the square of the distance to the light source. This can be
written as k/|B|2, and multiplying that by the value previously given:

I=k´A·B/|B|3

However,  as experimentation shows, it  is sometimes useful to use some other
falloff than square of distance. Generally, people have been using a second degree
polynomial of |B|. However, if we try the specific case of linear falloff, we get
this very interesting simplification:

I=k´A·B/|B|2

If B=(a,b,c), then |B|=(a2+b2+c2)1/2. Thus, |B|2=a2+b2+c2, which eliminates the
square root, which is usually the most expensive calculation we have.

The question of what point on the polygon should be used for calculating the
vector B from light source to the point on the polygon is answered as follows.
Theoretically, B should be recalculated for each point on the polygon. This might
turn out to be expensive, and a constant B is then used across the polygon. In this
case,  however,  the B/|B|2 factor  should be calculated only once for  the whole
polygon.

The Phong illumination model also includes a specular component. In that case,
a function of the angle between the ideal reflection vector and the eye-to-point
vector is added. The reflection vector R is the direction in which the light should
be most reflected by the surface. R can be shown to be

R=2A(A·B)-B

(remember that A is the plane normal and B the light vector and note that A and
B should be normalized).

85



Let  V be the vector  from the observed point  to  the eye,  normalized.  Then,  a
function of R·V can be added to the calculated intensity (before fallout due to
distance is taken into account),  which will add a specular like highlight to the
shading. Mr. Phong Bui-Tuong used the following specular component:

k´(R·V)a

where  a is  the so-called  specular reflection exponent and k is  the  specular
reflection coefficient.  The larger the  a,  the more punctual the reflection.  The
larger the k, the more intense the reflection. Values of a around 1-5 yield almost
no specular reflection, while a value of 300 or more yields a sharp spot. Note that
if a too large k is chosen, the image will look washed out or overexposed.

These calculations are done on a per light source basis, and should be summed.
Ambient light can also be added.

Shadow casting involves more complex computations which will not be discussed
here.

Smooth shading

The simplest form of polygon shading calculates one value of intensity and uses
that value across the whole polygon.

The other forms of shading require that we first examine our polyhedral model of
objects. The assumption we are making is that the polyhedral model is really an
approximation to a curved object. Thus, we would like the normal vectors and the
shading intensity to vary smoothly across the surface of the objects, just as it does
on a curved surface.

The usual way of accomplishing this is by computing a pseudo normal vector at
each vertex. (Keep in mind that a point in 3d has no normal vector, ergo we call it
pseudo-normal.) That pseudo-normal per vertex is not the normal of the vertex,
but rather the normal we think represents best the curved surface at that point. If
we  have  actual  information  about  the  curved  surface,  we  should  use  that
information if we can to compute the pseudo-normal. Otherwise, one good way
of doing this is by computing the weighted sum of the faces that touch the vertex.
For example, you could sum all normals of the faces that touch the vertex and
then normalize. Or, you could make each face's contribution to the pseudo-normal
a function of the face's area or the angle made by that face at the vertex, and so
on. For ease in calculations, pseudo-normals should be made unit in length.

86



Then, one can go either one of two ways. The first one is interpolated shading, or
Gouraud  shading.  The  second  one  is  Phong  shading,  which  is  a  bit  more
complex.

In Gouraud shading, one calculates the intensity of reflected light on the vertices.
Then,  we linearly  interpolate  the intensity  of  the light  across the polygon,  as
shown below.

As  can  be  seen  above,  intensities  are  calculated  for  all  vertices,  particularly
vertices  a,  b  and  c.  Then,  intensity  is  linearly  interpolated  between  a  and  b
(assuming m is 1/5 of the way between a and b, we'll assign m an intensity of 4/5
´a+1/5´b). It is also interpolate linearly between a and c. Then, given the light
intensities at  m and n,  the intensity  is interpolated linearly  between m and n.
Assuming P is midway between these two, then its intensity should be (m+n)/2.

Note that for a n-gon, with n>3, gouraud shading is ambiguous in the sense that it
depends on scanline orientation. However, with n=3, the shading is unambiguous.
As a matter of fact, given a triangle (x0,y0), (x1,y1) and (x2,y2) and the three
intensities at the points, respectively i0, i1, i2, we can view this as three points in
3d (x0,y0,i0), (x1,y1,i1), (x2,y2,i2). Since we are linearly interpolating, and that
we have 3 points, then there is only one solution, of the form i=Ax+By+C. Using
matrix  mathematics,  one  can  find  the  coefficients  A,  B  and  C,  and  then
computations are reduced to one add per pixel with very little setup. Specifically,
we know that:

Ax0+By0+C=i0

Ax1+By1+C=i1

Ax2+By2+C=i2

87



Which can be represented in matrix form as:

.
x0

x1

x2

y0

y1

y2

1

1

1

A

B

C

i0

i1

i2

or,

XK=G, where

X

x0

x1

x2

y0

y1

y2

1

1

1

K

A

B

C

G

i0

i1

i2

Therefore, we have that K=X-1G, which solves for K.

As a special note, it should be remembered that a similar process can be used for
any type of linear interpolation across the surface of a polygon.

It  is  easy to demonstrate  that  no point within the polygon will  be brighter  or
darker than the brightest or darkest vertex, respectively. If a specular highlight
should fall within a polygon, Gouraud shading will miss it entirely.

Phong shading (not to be confused with the Phong illumination model) works
around this the following way. Instead of interpolating the intensity linearly, it
interpolates the (x,y,z) values of the pseudo-normals linearly,  then normalizes,
and  the  does  the  lighting  calculations  once  per  pixel.  As  a  side  note,  the
interpolation of x, y and z can be done as we just saw for Gouraud shading.

As  you  might  imagine,  this  is  extremely  expensive.  Many  approximations,
workarounds  and somesuch have  been devised.  Here  we will  study one  such
approximation.

We will interpolate the (x,y) value of pseudo-normals linearly, but we will set
z=(1-x2-y2)1/2.  Note  that  we still  have  a  square  root.  However,  since  z  is  a
function of x and y only, and that x and y vary between -1 and +1 only, we can
make a lookup table  for  z,  which  makes it  a  lot  faster.  Then we can do the
lighting calculations. However, this is still a bit slow. If we know our light vector
to be constant across the screen, then we can optimize it further.

88



Assuming the light  vector  is  (0,0,1),  then the lighting  calculations  for  diffuse
shading only is (x,y,z)·(0,0,1). This simplifies to z, which is (1-x2-y2)1/2, which
is  the  value  we stored  in  the  lookup  table.  So,  interpolate  (x,y)  linearly  and
lookup intensity in the lookup table. As a matter of fact, one can even put some
other values than (1-x2-y2)1/2 in the lookup table. These can be used to achieve
specular  highlights,  multiple  light  sources,  or  some nice  metal/chrome/mirror
effects.

A note on the "mirror" effect. If we imagine that we have a sphere centered on
our object with an extremely large radius, and the in side of the sphere is paved
with  a  texture  (example:  stars  & stellar  objects)  and  the  object  has  a  mirror
surface,  then the environment  (textured sphere)  should be reflected on it.  The
perspective calculations and other things make this complex. However, we can
simplify  things  this  way.  We assume that  the  vector  from eye to  object  (eye
vector) is constant over all of the surfaces of the object (which is normally true
only  in  parallel  projections,  but  will  be  almost  true  if  the  object  has  little
perspective  distortion).  Second,  we assume that  the  sphere  has  a  large  radius
enough that the point of the sphere which is reflected by a point of the object only
depends on the eye vector and the surface normal.

In this case, we can interpolate the surface normal Phong-style, then use that to
compute the reflected point from the sphere using the eye vector. However, the
computations are still quite expensive. We can simplify them by using the hack
where we interpolate  x and y linearly  and then set  z=(1-x2-y2)1/2.  Then,  the
normal vector of a point on the surface is entirely determined by x and y. In this
case, the reflected point on the sphere depends on x, y and the eye vector. What
we can do is assume a fixed eye vector, then make a lookup table (which is then
only dependant on x and y, which is manageable) to find what point on the sphere
it reflects to.

Hence this simplifies to interpolating the (x,y) component of a surface normal
across the screen, then looking it up in a lookup table that contains the color of
the corresponding reflected point on the sphere.

Texture mapping & variants on the same theme

Texture  mapping  is  the  process  by  which  we give  a  polygon  its  own planar
coordinate system, with two base vector that lie in the polygon's plane,  and a
vector for the position of a point in the plane. Specifically, if u and v lie in the
plane of the polygon, and w is a point in the plane of the polygon (for example, a
vertex), then the plane equation for the polygon can be written as:

au+bv+w

89



where (a,b) are the texture coordinates on the polygon. Once we have (a,b), we
can assign different properties to different (a,b) pairs. For example, we can make
the color of the polygon a function of (a,b), which corresponds to classical texture
mapping. Another thing we can do is perturb the surface normal of the polygon
with some function of (a,b), which corresponds to bump mapping.

As it is, the Phong shading approximation we saw in the last bit of the preceding
section is essentially a texture mapping trick.

Note that it is possible to have several different coordinate systems for the same
polygon, if several different textures have to be applied (ie,  one for the actual
texture  mapping,  another  one  for  the  phong  shading,  another  one  for  bump
mapping, and who knows what else).

What we have said in this section up to now is (relatively) independent of the
projection used. Now we will consider the type of projection used.

In a parallel projection, linear interpolation, just like we did for Gouraud, across
the projected surface is correct (so long as the surface is planar). However, when
perspective projecting, linear interpolation is generally wrong. For an elaborate
discussion of the texture mapping equation in the perspective projection case, see
the perspective chapter.

If the plane of the perspectively projected polygon is perpendicular to the z axis,
then linear interpolation is exact. As the angle between the plane of the polygon
and the z axis moves away from 90 degrees, linear interpolation becomes more
and more wrong.  If  the polygons are small  enough on screen,  the perspective
distortion might now show, but for larger and more angled polygons, it is quite
apparent.

Linear  interpolation may suffice for  some purposes on low end platforms and
games, but a correction for perspective will definitely be needed for more serious
applications, as discussed in the perspective chapter.

90



Computer graphics related problems

Introduction

In the process of learning computer graphics,  one comes across several of the
classical questions in one version or another. These include "how do I compute
the plane normal of a triangle" or more generally "how do I compute the plane
normal of a polygon, preferably using all vertices to minimize error", "how do I
make a normal that points outwards" and such.

These technical questions need to be addressed individually, since they typically
have very little in common. First will be covered generating normals that point
outwards  for  polygons.  An  application  of  that  will  be  covered,  which  is
triangulation of a concave polygon. Computation of a normal for any polygon is
then considered,  by using all vertices to compute it.  Then will  be covered the
problem of generating plane normals that point outwards of a polyhedron, which
relies on edge normals that point outwards of a polygon.

Generating edge normals

It will prove to be essential for the later problems to have normals for the edges
that point outwards from the polygon. We might as well start by saying that for
an edge of slope m, the normal would be (-m,1) unitized. The second preliminary
is defining modulo space addition and subtraction.

Let a and b be integers of modulo n space. Then, aÅb is defined to be (a+b)%n,
where x%y means "remainder of the division of x by y" (the remainder is always
positive,  between 0 and y-1).  Similarly,  aQb is defined to be (a-b)%n.  As an
example, let's assume we are working in modulo 8 space. Then,

3Å2=5%8=5 5Å6=11%8=3 4Q3=1%8=1 4Q7=-3%8=5

The  first  step  is  to  generate  normals  for  all  edges  by  calculating  (-m,1)  and
unitizing it. These normals will not all be oriented correctly.

91



Let x0, x1, x2, ..., xn-1 be the vertices in a clockwise or counter-clockwise order
around a n-sided polygon. Furthermore, let Ni be the normal of the edge between
xi and xiÅ1.

The  second step  is  finding  the  topmost  vertex.  In  cases  of  ambiguity,  of  all
topmost vertices, take the leftmost. This vertex is certain to be convex. Say this is
vertex is vertex xi.

Let U be the vector from xi to xiÅ1, and V be the vector from xi to xiQ1. Then
calculate  the value of  U·Ni. If  it  is  positive,  invert  Ni,  otherwise do nothing.
Similarly,  calculate  V·NiQ1 and  if  it  is  positive,  invert  NiQ1,  otherwise  do
nothing. Ni and NiQ1 are now correctly oriented.

The point of that first step was to make at least one correctly oriented normal.
Then,  start  following  the  edges  and  generate  correctly  oriented  normals  as
follows.

Given a vertex xi for which NiQ1 is known to be correctly oriented, Ni can be
computed as follows. Let U be the vector from xi to xiÅ1, and V be the vector
from xi to xiQ1. Calculate NiQ1·(U+V) and Ni·(U+V). If the results are of the
same sign do nothing. If they are of different signs, invert Ni. Ni is now correctly
oriented.

Triangulating a polygon

Let us first cover the convex scenario. We will be using the same notation as in
the previous section.

Take any triplet of vertices xiQ1, xi, xiÅ1. These three vertices form the first
triangle. Then, remove vertex xi from the list, and the polygon has now one less
vertex. Repeat until the polygon is a triangle, at which point you are finished.

92



One step of the algorithm is shown above.

The concave scenario is a bit  more complicated.  What we will  do is split  the
concave polygon into smaller polygons, eventually resulting in either triangles or
convex polygons that can be triangulated as above.

Find a vertex that is concave. Let U be the vector from xiQ1 to xi. Then, vertex xi
is concave if and only if U·Ni is more than zero. Loop through the vertices until
you find such a vertex. If you do not find one, then the polygon is convex and
triangulate it as above.

From that vertex, find a second vertex xj for which the line segment from xi to xj
does  not  intersect  any  other  edge.  Then,  insert  that  new  edge,  making  two
polygons, one that has the vertices xi, xiÅ1, xiÅ2, ..., xj, and one that has vertices
xj, xjÅ1, xjÅ2, ..., xi. Re-apply the algorithm on these two smaller polygons.

It can be demonstrated that using the above algorithm on a n sided polygon will
generate exactly n-2 triangles.

Computing a plane normal from vertices

It  can  be  shown  that  the  (P,Q,R)  components  of  the  normal  vectors  are
proportional to the signed area of the projection of the polygon on the yz, xz and
xy plane respectively.

The signed area of a polygon in (u,v) coordinates can be shown to be:

A(u,v)=1/2´å0£i<n(vi+viÅ1)´(uiÅ1-ui)

where (ui, vi) are the coordinates of vertex xi in 2d.

Since we're not really interested in the signed area, but some constant time the
signed area, the 1/2 can be safely ignored without loss of precision.

93



Given a polygon in 3d, one can compute the above with:

P=A(y,z) Q=A(z,x) R=A(x,y)

Or, if you want, P is the area as calculated using only the y and z components of
the points in 3d, Q is the area as calculated using the z and x components of
points in 3d, and R is the area as calculated using the x and y components of
points in 3d.

Once this value of (P,Q,R) is known, the result should be normalized, and then
correct orientation should be checked as described hereafter.

It should be noted that the A(u,v) equation simplifies to

A(u,v)=1/2´[(u0-u1)(v0-v2)-(v0-v1)(u0-u2)]

in  the  case of  a  triangle.  Again,  the  1/2  constant  can  be  ignored  for  normal
generation purposes.

Generating correctly oriented normals for polyhedra

In some cases, normal orientation is implicit in the object description we have.
For  instance,  some modelers output  all  vertices in  a counterclockwise manner
when seen from above. If this is the case, then all that is needed is that the normal
be computed in a specific  way, without  changing the ordering of the vertices.
Then the normals will be correctly oriented.

If this is not the case, we need some form of algorithm to ensure proper normal
orientation.

For  this  task,  we need to  have computed  the  normals  to  the edges to  for  all
polygons making up the polyhedron, each in their respective plane of course. The
edges  normals  in  the  polygons  planes  can  be  localized  in  space  for  the
polyhedron, we are going to use this. Note that each edge is connected to two
polygons, thus has two normals, one per polygon.

Find the vertex with the smallest x coordinate. In case of ambiguity, resolve with
the smallest y coordinate. In case of ambiguity, resolve with the smallest z value.
This vertex is known to be convex. Take all edges connected to that vertex, and
find the vector U that is the sum of all edge normals (two per edge). Then, for
each face touching the point, calculate A·U, where A is the face normal. If the
result is negative, invert A, otherwise leave it as it is. All such faces now have
correctly oriented normal.

94



From this  point,  traverse  all  faces,  propagating  correctly  oriented  normals  as
follows. Let us assume we have two faces F1 and F2, and that F1's normal is
correctly oriented. Let A1 and A2 denote F1 and F2's normals respectively. Pick
an edge shared by F1 and F2, and compute U, the sum of the two edge normals.
Then  evaluate  A1·U  and  A2·U.  If  they  are  of  different  signs,  invert  A2,
otherwise leave it that way. A2 is now correctly oriented.

A special  note,  if  the dot products are very close to  zero,  the face should be
initialized with the same normal, and marked as ambiguous. Later, if you can find
another face to help you better determine the orientation of that face,  use that
normal  instead.  At  any  rate,  ambiguous  faces  should  be  avoided  when
propagating normal orientation.

One very good way of propagating the normals is to start with one of the initial
faces for which we generated the normal, and then do a depth first search through
connected faces. The depth first search is elementary and will not be discussed
here because it is not absolutely necessary, though it will tend to minimize time
spend computing normals orientation.

Polygon clipping against a line or plane

This problem often occurs in computer graphics, and is often needed real time.
Fortunately, convenient solutions exist that work well.

The simplest solution is with convex polygons. In this case, one should note that
there are only 2 intersections of the clipping line or plane with the edges of the
polygon. When we face a concave case, there is an even number of intersections
with the edges, but some ordering should be done for them, or degenerate edges
might result.

The method for clipping convex polygons is illustrated below.

95



Note that if one wants to keep both pieces of the clipped polygon, this algorithm
can be trivially extended.

A more formal way of describing this algorithm is as follows.

Let v1,v2,v3, ..., vn be the list of vertices, listed in a 
clockwise or counter-clockwise fashion.

Then P1 will be the first piece of polygon, and P2 will be the 
second piece.

For i iterating from 1 to n do
If the edge from vi to viÅ1 intersects the clipping line

break loop
End if

End for

For j iterating from i to n do
If the edge from vj to vjÅ1 intersects the clipping line

break loop
End if

End for

Let x be the intersection point of edge vi-viÅ1 with the clipping
line.
Let y be the intersection point of edge vj-vjÅ1 with the clipping
line.

P1 is (in clockwise or counterclockwise)
v1,v2, ..., vi, x, y, vj+1, vj+1, ..., vn

96



P2 is x,vi+1,vi+2, ..., vj,y

When doing this to a concave polygon, the algorithm is slightly more complex.
Find all intersection points of edges with clipping line, and sort them according to
some arbitrary axis (try to use one for which the points coordinates vary a bit).
Name these sorted points p1, p2, ...,  pn. Then, insert the new edges p1-p2, p3-
p4, ..., pn-1 - pn. Then separate the two polygons and you are done.

97



Quaternions

Introduction

In this chapter,  a good understanding of basic mathematics is assumed.  I  also
have  been  extremely  lazy  and  I’m  not  giving  any  justifications  whatsoever.
Someday,  hopefully,  this  will  be  righted.  It  is  possible  to  do  very  much
everything that is described here using only matrices with a good knowledge of
linear algebra. For instance, as a first step, we can find a matrix that rotates about
an  arbitrary  unit  vector  by  a  specific  angle.  Then,  if  we  want  to  interpolate
linearly  between  two  orientations,  we  can  proceed  as  follows.  First  find  the
matrix M that expresses the transform from the first  orientation to the second
orientation. Then find the eigenvector of that matrix, this is the desired axis of
rotation.  Then linearly interpolate the angle from 0 to whatever angle the two
orientations make.

Let us recall  complex numbers, which have the form a+bi, where i2=-1. These
complex numbers can also be represented in polar or  exponential form. I will
interest myself mainly with the latter. The exponential form of a complex number
is Z=r´exp(iq), where (r,q) are the polar coordinates of Z in the complex plane.
All points in the plane can be represented by a complex number. Let B be a unit
quaternion (that is, of the form B=exp(iq0)). Recall that, when multiplying two
complex numbers, we multiply the modules and add the angles. Let us multiply Z
by B. Then, we get ZB=r´exp(iq+q0), or Z rotated by q0.

The morale of this story is that unit complex numbers can be used to represent
rotations in the plane.

We will now develop a similar tool for modeling rotations in 3d. A quaternion Q
will  be  of  the  form  Q=W+Xi+Yj+Zk,  where  1,  i,  j  and  k  are  linearly
independent quantities  (and  i,  j  and  k  are  linearly  independent  imaginary
numbers). Then, we will define quaternion multiplication, by using the following
basic rules:

i2=j2=k2=-1, ij=-ji=k, jk=-kj=i, ki=-ik=j.

It will so turn out that, similarly to unit complex numbers represent rotations in
the plane, unit quaternions will represent rotations in 3d.

98



Obviously, this is a lot of work for "just another representation of rotations in
3d", especially where matrices work fine. Indeed, even if one is using quaternions
to  represent  orientations,  one  will  typically  convert  to  a  matrix  when  actual
transformations  are  required.  The  main  advantage  of  quaternions  is  for
interpolating between two orientations in a useful manner, and mayhaps also for a
compact representation of orientations.

Preliminaries

Several  notations  can  be  used  to  write  quaternions.  The  following  are  all
equivalent:

Q=W+Xi+Yj+Zk

Q=<W, A> with A=(X,Y,Z) (a real number W, with a 3d vector (X,Y,Z))

Q=(W,X,Y,Z) (a 4d vector)

We can define a multiplication operation that respects the following:

i2=j2=k2=-1, ij=-ji=k, jk=-kj=i, ki=-ik=j.

<a1, v1>´<a2,v2>=<a1a2-v1·v2 , s2v1+s1v2+v1´v2>

Of course, a1 and a2 are real numbers and v1 and v2 are 3d vectors.

The  norm or  module of a quaternion Q=(W,X,Y,Z) is defined as the euclidian
norm of vector (W,X,Y,Z). A unit quaternion is a quaternion for which its norm
is 1.

The conjugate of quaternion Q=<W,A> is defined as Qc=<W,-A>.

If we have the quaternion

Q=(0,v)=(0,X,Y,Z)

and the unit quaternion

U=(cos(q/2),sin(q/2)´V)

where V is a unit vector, and

Q'=(0,v')=U´Q´Uc

then it can be shown that v' is v rotated about V by an angle of q.

99



Note that this implies that the two unit quaternions Q and -Q represent the same
rotation.

Conversion between quaternions and matrices

The  quaternion  Q=(W,X,Y,Z)  (assuming  Q  is  unit)  is  equivalent,  when
interpreted as a rotation, to the matrix:

1 .2 Y2 .2 Z2

..2 X Y ..2 W Z

..2 X Z ..2 W Y

..2 X Y ..2 W Z

1 .2 X2 .2 Z2

..2 Y Z ..2 W X

..2 X Z ..2 W Y

..2 Y Z ..2 W X

1 .2 X2 .2 Y2

By  examining  the  above  matrix,  it  is  easy  to  find,  given  an  orthonormal
orientation matrix, the corresponding quaternion. First, compute W.

m11+m22+m33=3-4X2-4Y2-4Z2

(m11+m22+m33+1)/4=1-X2-Y2-Z2

But |(W,X,Y,Z)|=1 hence W2+X2+Y2+Z2=1 hence

W=[(m11+m22+m33+1)/4]1/2

Then, compute X, Y and Z.

X=(m32-m23)/4W

Y=(m13-m31)/4W

Z=(m21-m12)/4W

Orientation interpolation

Often, we might only have an initial orientation, and a desired orientation at some
point in the future, and no data in between. In this case, it might be desirable to
interpolate  the  orientations  between  these  two  key  orientations.  Assuming  no
other data is available, quaternion interpolation is very appropriate.

100



This could be done with Euler angles. However, several problems arise when we
do so. We can very difficultly control the exact path of the rotation, or the speed
for that matter. We also get a problem called "Gimbal lock", where the object
appears  to  stop  turning  for  a  brief  moment,  and  then  starts  again  in  an  odd
direction.

Using quaternions, we get none of these problems. Speed of rotation can be made
constant, and the path of the rotation will be that of the shortest arc. However, we
get numerical problems when the rotation is close to 180 degrees. Also, we will
need to interpolate through more than 2 quaternions if we want to rotate by more
than 180 degrees.

The idea is to picture the unit quaternions as being on the unit hypersphere in 4d.
Then,  we  can  find  the  shortest  arc  over  that  hypersphere  between  these  two
quaternions, and interpolate linearly the angle along that arc.

Given two unit quaternions, q1 and q2, let us first find the angle between them.
By definition of angle as a function of dot product, we have:

f=acos(q1·q2)

Then, let us have a parameter t that varies from 0 to 1. Then, the quaternion given
by:

q( )t .sin( ).( )1 t f

sin( )f
q1 .sin( ).t f

sin( )f
q2

will give uniformly distributed orientations between q1 and q2 as t varies from 0
to  1.  In  particular,  q(0)=q1,  q(1)=q2.  This  is  called  spherical  linear
interpolation, or SLERP.

Note that we didn't check if we were using the shortest arc or the longest on the
great circle. In order to take the shortest path, we simply check that

(q1-q2)·(q1-q2)>(q1+q2)·(q1+q2)

If that is false, replace q2 by -q2 (this is allowed since Q and -Q represent the
same rotation).

The above formula will have numerical difficulties when  f is close to 0 or  p.
When  f is  close  to  0,  we  can  replace  the  SLERP  with  a  simple  linear
interpolation. E.g. q(t)=(1-t)q1+tq2. When f is close to p, we need to add more
keyframes (intermediate quaternions).

101



Antialiasing

Introduction

In many places, we have approximated continuous phenomena by sampling it at
discrete intervals, and then reconstructing an image with these samples. As an
example, we have studied shooting one beam of light through the center of a pixel
and see what it intersects and then coloring the whole of the pixel by whatever
color corresponds to what it hits.

This  might  result  in  very  inaccurate  and sometimes unsightly  pictures.  As an
example, take a black and white tiled floor for which the tiles are 0.25 meters
wide, which we sampled at intervals of .5 meters. Then, we will have either all
white samples or all black samples. This does not represent the color of the floor,
which should either be a mix of black and white, or, in a certain sense, gray.

This is an example of aliasing in space,  but numerous other  types of aliasing
exist.  For  example,  say  we  are  making  an  animation  by  generating  several
pictures  of  a  scene  with  moving  object  and  then  displaying  the  still  frames
quickly  (say,  24  frames  per  second).  In  our  model,  if  an  object  moves  fast
enough, it might appear to jump around on the screen. For example, if the object
is 1 centimeter big, but moves so fast that in 1/24th of a second (the duration of a
frame), it's 5 centimeters away from where it was before, the object will appear to
jump very drastically. Or even worse, an object could pass right in front of the
camera in between frame a and b, but not be on neither frame a nor b.

In this section, we will introduce a few of the techniques that can be used to fix
these problems.

Filtering

Filtering, in the way that we want to use it, is essentially a weighted average of a
signal.  Filtering theory is extensive,  but we are not concerned too much by it
here. I will just mention that it is possible to take the transform (Fourier, wavelet
or other) of a signal and then remove very small amplitude components and/or
"high frequency" components. This is what is traditionally viewed as filtering.

102



In our case a filter is represented by a filtering mask. We'll start with 1d cases. If
we have a 1d signal (think of it as a single scanline in a pixmap, or maybe some
sampled sound), then we have something like s1,s2,s3,s4, ..., sn, where the si's are
sampled  data.  Here,  we have  n  samples.  Then,  we  might  want  to  create  the
samples s1', s2', s3', ..., sn-1', where si'=(si+si+1)/2. This is an example of a filter,
sometimes  referred  to  as  a  "low-pass filter".  This  is  another  legitimate  filter:
si'=.25si+.75si+1.  This  particular  filter  is  said  to  be  biased towards  si+1.  In
general, the class of filters asi+bsi+1 can be represented by the vector equation
(a,b)·(si,si+1).  (a,b) is said to be the filter mask. In the last example we gave, the
filter mask is (.25, .75).

In general, filters are applied by taking the weighted sum of several samples. We
normally like that the sum of the components of the filter mask be one, in which
case the filter tends to not change the overall intensity of the image. If the sum of
the  components  of  the  filter  is  not  one,  we  get  very  different  effect.  As  an
example,  the  filter  (-1,2,-1)  is  sometimes  called  the  differential  filter,  for  it
approximates  the  derivative  of  a  signal.  It  is  generally  not  very  useful  as  an
approximation to the derivative, however it tends to highlight contrasts in a signal
and can be used to help in edge detection, for example. This filter can be written
as si'=-si+2si+1-si+2.

Two dimensional filters are generally more useful to computer graphics people.
They are usually written in matrix form, F=(fij). This is an example filter, called
the box filter.

1
16

2
16

1
16

2
16

4
16

2
16

1
16

2
16

1
16

q[i][j]=(p[i][j]+2p[i][j+1]+p[i][j+2]+

2p[i+1]+4p[i+1][j+1]+2p[i+1][j+2]+

p[i+2][j]+2p[i+2][j+1]+p[i+2][j+2])/16

Where q[i][j] is the filtered sample, and p[i][j]'s are the original samples.

These filters are made so as to remove very high frequency from images, which
are usually poorly represented. (High frequency component here is taken in the
Fourier series sense.)

103



Pixel accuracy

When  applying  any  type  of  shading  except  flat  shading  to  a  polygon,  pixel
precision  becomes an issue.  We often  calculate  incrementally  some value per
edge (for example, in gouraud shading, we interpolate the shading linearly along
the edge, and in texture mapping, (u,v) texture coordinates get interpolated along
edges and across the polygon).

Referring to the figure above, an example will be given with Gouraud shading.
The  small  circles  represent  the  pixels,  and the  dark  edges  are  the  edge  of  a
triangle. With Gouraud shading, we start at P and we are given some initial color.
Then, we want to interpolate down the edge. However, it is important to notice
that P is less than one scanline above the scanline of P1. Therefore, the vector
drawn above from P to P1 is shorter than the vector from P1 to P2, also drawn
above. This needs to be taken into consideration to get correct pixel accuracy.
Furthermore, once we have the correct color at P1, we can't simply put that color
into pixel A even though the distance between P1 and A is less than one pixel.
We have to take into account the distance from P1 to A into our calculations. As a
matter of fact, in this particular example, A is roughly halfway between the left
and right edge so its color should be roughly the average color of the two edges.

Then, as we go to the next scanline, we need to perform our calculations starting
from P1. Given the color at P1, we find the color at P2, and then we need to
calculate the proper color for pixel B by taking into account the distance from P2
to B. This goes on for the whole triangle or polygon.

104



This example can also illustrate how edge pixels should be considered. First of
all, edge pixels should be extremely rare. As can be seen in the example above,
not one pixel is exactly on an edge. In the very rare case when a pixel is exactly
on an edge, you can use a simple disambiguating rule to decide one it, such as
"draw the pixel only if it's on a left edge, not on a right edge". Another way of
doing this is of thinking of pixels as having irrational x coordinate and rational y
coordinate so that edges with rational endpoints have no hope of going through
them.

Sub-pixel accuracy

The other way of improving the quality of our images is by doing all calculations
at  some higher  accuracy.  The  intuitive  way of  doing this  is  to  create  a  high
resolution image and scale it down to the display resolution afterwards,  which
ought to produce a better looking image.

It turns out that this works well, and is in fact hard to beat. However, it is rather
expensive, both in rendering time and storage space, and we will attempt to look
into alternate algorithms as well.

When scaling an image down, there comes the question of how pixels should be
averaged.  This  boils  down to picking a filter,  as in  the previous  section,  and
applying it to each region of the pixmap that gets scaled down to one pixel. Note
that the uniform filter (the filter in which each pixel has equal weight) might not,
as could be thought at first, be the best choice. The box filter is already a better
choice.  However,  a  uniform filter  is  better  than  no filter,  and one  should  be
considered for a real-time system if it is easier to achieve than a generic filter.

An alternative to generating a fully blown high resolution picture is to adaptively
increase the resolution.  If  you find that several small objects get drawn in the
same pixel, subdivide that pixel into a small bitmap and calculate more precisely
for that pixel. This can be recursed at will, for arbitrary precision. However, this
process is still  somewhat expensive, and has the disadvantage that it has to be
more or less hard-wired all over the graphics engine. It is hard to perform this in
real time.

A very attractive alternative is the so-called A-buffer.

For each pixel, a 4x8 subpixel grid is associated. However, instead of having full
R,G  and  B  components,  they  are  merely  bitmasks.  Then,  for  all  pixels,  the
following is done. A list of all polygons covering this pixel has to be generated.
Then,  the  4x8 bitmask  of  whatever  is  covered  by a  polygon  in  that  pixel  is
generated. Then, using and's the amount of overlap can be determined, etc... and
color can be computed using this (more on this later).

105



Let us use an example. Let's say that the following polygonal piece is in a pixel:

This is represented by the following bitmask:

00000000   00001111     11100000
00010000 = 00011111 and 11110000
00010000   00011111     11110000
00111000   00111111     11111000
 (A)         (B)         (C)

Notice that (A) is the bitmask for the part of the triangle that covers the pixel,
while (B) and (C) are the bitmasks for what's inside of the left and right edge,
respectively. Thus, bitmasks are computed for each edge and are and'ed together
to  get  the  bitmask  for  the  triangle.  The  bitmap  can  also  be  made  by  some
exclusive or of bitmasks (this latter method might be a bit less useful).

If we then or all bitmasks for all polygonal pieces together, we get a bitmask that
tells us what portions of the pixel are covered by any polygons. Then, using and,
we determine which pieces of polygons overlap. We might also need the Z value
of  the pixel  per  polygon (not  for  each bit  in the bitmask,  only for  the whole
pixel), so that we can determine which bitmasks are in front of each other. What
follows is a suggested algorithm for drawing a pixel:

Let B[i] be the bitmask of polygon i, i varies from 1 to n (number
of polygons covering the pixel).
Let C[i] is the color of the polygon i.
Let M be the following bitmask:

11111111
11111111
11111111
11111111

Let P be the pixel color, initialized to 0 (black) (either a color
vector, or a monochrome intensity)
Let K be the background pixel color
Assume polygons are sorted front to back (ie, polygon i is in 
front of all polygons greater than i).
Let #X be the number of bits that are set in X

For j=1 to n, do
foo=B[j] AND M
P=P+C[j] * #foo / 32
M=M XOR foo

End For
P=P+K * #M / 32

106



Note that 4x8 bitmasks have the nice property of being 32 bits numbers, which
can be manipulated  very  easily  on today's  platforms.  The algorithm can very
easily  be adapted to  4x4 bitmasks (for  16 bit  machines,  for  example)  or  8x8
bitmasks (for 64 bits machines for example).

Also note that this algorithm works relatively well if polygons are depth sorted
front to back and then drawn. It can't really be drawn strictly back to front.

Time antialiasing, a.k.a. motion blur

We already  mentioned  the  time  aliasing  effect.  The  most  popular  method  of
performing  time  antialiasing  is  still  to  generate  several  frames  at  very  close
interval and merge them together. Once more, different filters can be applied.

One  has  to  be  careful  when  performing  motion  blur.  Visible  motion  blur  is
something that should only happen when things are moving faster than the frame
rate allows us to  see.  For example,  an animation going at 24 fps (frames per
seconds)  should not  have a trail  behind an object  moving one millimeter  per
frame on the screen. Put in different terms, an animation going at 24 fps should
not show in a frame an event that happened 0.25 seconds ago. This effect, called
persistence,  can  be  quite  annoying,  and  though  it  can  produce  an  interesting
result, it is generally not interesting or realistic to do so.

Therefore, if we want to generate a time antialiased animation at 24 fps, we really
need to generate something like an 120 fps animation, and then apply a filter to
merge the frames four by four and get a 24 fps animation. This is, as can be seen,
quite expensive. However, it tends to produce very nice looking pictures. If the
frame rate  isn't  kicked high enough,  a fast  moving object  will  appear (in  our
example above) as 4 distinct though semitransparent images per frame. This is
probably undesirable, but little can be done if objects are moving fast enough.

Other  approaches  have  been attempted,  mostly  in  raytracing,  and will  not  be
discussed  here.  One  notable  area  that  might  be  worth  further  interest  is  the
extruding of polygons as volumes in 4d with time as the fourth dimension and
trying to get the motion blur from that. This would have the advantage of being
much more exact than anything presented here, all the while not having problems
with very fast moving objects. However, even if the exact path of the object is
known, extrusion along that path might be too expensive or difficult to perform,
so  linear  extrusion  might  have  to  be  considered.  Nevertheless,  I  suspect  this
would produce very attractive results.

Mipmapping

107



Texture  mapping  was  described  previously.  However,  a  naive  approach  was
taken; we did not consider what happens when the texture is so scaled down that
it  takes  several  texels  to  cover  a  single  pixel.  In  the  context  of  this  chapter,
however, we would like to somehow "average" (more properly, filter) the texels
that cover a single pixel to get a nicer looking picture. To illustrate the problem,
if the texture is so shrunk that it barely covers one pixel, then the color of that
pixel will be a more or less random point from the texture. Hence, if the texture is
not  very  "smooth",  this  particular  pixel  can  "blip",  change  color  rapidly  and
scintillate. This is of course undesirable. Also, even though the texture seen from
afar might be blue for the most part, a small reddish region might result in the
whole pixel appearing red, which would be wrong.

Performing different approaches can be taken to this antialiasing problem. We
can actually compute all the texels that fall within a pixel, then apply some filter,
perhaps even based on the size of the texel in the pixel. These sort of approaches
lend themselves very poorly to real-time applications, which is the main interest
of this document, hence we will not approach them.

A real-time alternative is Mipmapping. The texture map is pre-filtered to different
degrees, and at run time, we determine how much the texels get squished by the
perspective transform, and the select the proper mipmap.

Uniform Mipmapping

Classically, this is how mipmapping is done. We start with a texture map. Say the
texture map is of size 64x64. Then, mipmaps of size 32x32, 16x16, 8x8, 4x4, 2x2
and 1x1 are generated by recursively averaging 2x2 blocks of pixels. We start
with the 64x64 texture map, then average each 2x2 block to get a 32x32 mipmap.
Then  we  filter  that  mipmap  again  to  get  a  16x16  mipmap,  and  so  on.  The
mipmaps can be labelled "mipmap #1" for the unfiltered texture map, "mipmap
#2" for the first mipmap, and so on.

The mipmap should be chosen based on the amount of squishing we think the
texels will undergo. If we feel that each pixel will cover about 4 texels (roughly a
2x2 block), then we should use the 32x32 mipmap. If the texmap is even more
squished (perhaps 16 texels per pixel,  4x4) then the 16x16 mipmap should be
used.

Let's look at memory requirements. Let K be the amount of memory used by the
basic  texture  map.  First  we  observe  that  averaging  2x2  block  of  pixels  and
making  the  first  mipmap  makes  something  which  takes  one  fourth  as  much
memory as the texture map. As a matter of fact, each time we generate another
mipmap, the memory taken by the new mipmap is 1/4 that of the old. Hence the
total memory is:

K+K/4+K/16+K/64+K/256+...+K/(4n)<K+K/4+K/16+...+K/(4n)+...

108



=K(1+1/4+1/16+1/64+........)=4K/3

Hence,  classical mipmapping takes but 1/3 more memory than straight texture
mapping.

The problem of determining which mipmap to use is, however,  not trivial.  As
mentioned previously, this should be a function of the "squishing" undergone by
the texels. However, the squishing in the x direction can be vastly different from
the squishing in the y direction.  You can fight  with this,  or you can invent a
newer type of mipmapping.

Nonuniform Mipmapping

Instead of scaling the texture map homogeneously (by the same factor in x and y),
we can generate mipmaps with nonuniform scaling. This way, if there is a lot of
"squishing" in a direction, but very little in the other, a relatively good mipmap
can still be found.

Still  using  the  64x64  example  above,  we  would  generate  mipmaps  of  the
following sizes:

64x64 64x32 64x16 64x8 64x4 64x2 64x1

32x64 32x32 32x16 32x8 32x4 32x2 32x1

16x64 16x32 16x16 16x8 16x4 16x2 16x1

8x64 8x32 8x16 8x8 8x4 8x2 8x1

4x64 4x32 4x16 4x8 4x4 4x2 4x1

2x64 2x32 2x16 2x8 2x4 2x2 2x1

1x64 1x32 1x16 1x8 1x4 1x2 1x1

Note that the mipmaps can be indexed by a pair  of number.  For instance, the
mipmap 64x64 can be identified to the pair (1,1), the mipmap 64x16 could be
identified to the point (3,1), mipma 2x4 would be (5,6) and mipmap 1x1 would
be (7,7).

It might appear on first look that this will require a lot of memory, however this is
not as bad as it might first appears. A geometric demonstration is given below.
This figure contains the texture map plus all the mipmaps listed above. As can be
seen, the memory taken by the mipmaps and the texture map is four times the
memory taken by the texture map alone.

109



In this case, the mipmaps are indexed by two indices. If no scaling occurs in the x
direction,  but scaling is roughly 1/2 in the y direction,  we might  want to use
"mipmap (1,2)" (which is the 64x32 mipmap).

All in all, uniform mipmapping takes 4/3 the memory used by a texmap but has
its problems, while nonuniform mipmapping makes an attempt to reduce these
problems but takes 4 times as much memory as a simple texmap. Note, however,
that we are fortunate enough that the amount of memory taken by nonuniform
mipmapping is merely a constant times what is required for texture mapping.

Summed area tables

If we want to use a block filter (average all the texels that should go in a mipxel),
we can use something perhaps more general, called a summed area table.

Let’s say we have a texture map T[x][y]. We want to calculate the average of all
pixels  in  the  square  delimited  by  say  (p,q)  and  (r,s).  (That  is,  the  square
[p,r)x[q,s).) One way is to pre-compute a summed area table of the same size as
the original texture. This summed area table S is defined as follows. S[x][y] is the
sum of all texels T[m][n] for m<x, n<y. Then it is easy to see that the sum of all
texels in the (p,q)-(r,s) square is Q=S[r,s]-S[p,s]-S[r,q]+S[p,q]. Then the mean is
M=Q/([r-p]x[s-q]).

This allows us to apply one very special type of filter to axis aligned boxes in the
texture map relatively quickly. The probem is, most of the time, the texels that
cover a pixel we are rendering do not form an axis aligned box in the texture
map. There are also other issues: the block filter is not a tremendously attractive
one,  the filter  should depend on the relative space taken up by each texel  on
screen, and so on.

110



Bi-linear interpolation

Now we have (more or less) taken care of the case where several texels are in the
same pixel. But sometimes the opposite happens, and a texel gets stretched over
several pixels. Of course, if we are using one of the smaller mipmaps and the
texels cover many pixels it could mean that we should be using a larger mipmap.
But when we get to the raw texture map and there are no more "larger" texture
maps, we're stuck.

Bi-linear interpolation attempts to solve this problem. We will be using a linear
polynomial  of  two variables (ie,  a plane equation),  thus the “Bi” of  bi-linear.
Typically, the texel coordinates will not be integer, as is depicted below.

The texels are nw, ne, sw and se (short for north west, north east and such). P is
the actual texture coordinate for the current pixel. A, B, C and D are the area of
the rectangles seen on the diagram above. The color we assign to the pixel will
be:

A´nw+B´ne+C´se+D´sw

This is the "bi" part of bi-linear. Incidentally, this will also improve pictures when
mipmapping is used.

It is possible to use something other than linear interpolation. For instance, bi-
cubic interpolation is popular. Bicubic polynomials are often used. A grid of 4x4
texels will be used as control points for some uniform spline of two variables.
Once the spline coefficients are known, the spline is evaluated at the intermediate
point P (see the figure for bi-linear interpolation, above) and this value is used to
shade the pixel.

Tri-linear interpolation

Tri-linear interpolation is bi-linear interpolation with an additional interpolation.
First,  a  description  for  uniform mipmapping  will  be  given,  then  this  will  be
extended to nonuniform mipmapping and summed area tables.

111



When we use mipmapping, we need a function which tells us what mipmap to
use.  However,  maybe this  function tells us to use "mipmap #3.15",  which we
round  to  simply  "mipmap  #3".  This  means  that  we  should  use  a  mipmap
somewhat in between 3 and 4, but more towards 3. Tri-linear interpolation simply
interpolates linearly the mipmap between mipmap 3 and 4 (probably using, in our
specific example of "mipmap #3.15", 85% of mipmap 3 and 15% of mipmap 4).

This  will  make  the  change  in  mipmaps  quite  smoother,  which  will  have  an
important effect on animations in particular.

Using nonuniform mipmapping, we simply extend our idea to interpolate linearly
between four mipmaps. Ie, if we want mipmap #3.2 in the x direction and #5.7 in
the y direction, we mix in (0.8´0.3)=0.24 of mipmap (3,5) with (0.2´0.3)=0.06
of mipmap (4,5), (0.8´0.7)=0.56 of mipmap (3,6) and lastly (0.2´0.7)=0.14 of
mipmap (4,7).  As we can see,  mipmap (3,6)  is the dominant  one,  as is to be
expected and mipmap (4,5) is barely used at all.

112



Glossary

Complex numbers: a number with a real and imaginary part, of the form Z=a+bi, where i
is  the  imaginary  part.  We  define  i2=-1.  This  way,  we  can  define  addition,
multiplication, subtraction, and even inverse. Complex numbers can be compared
to points in the plane. As such, they have a polar coordinate form. From this we
can define the euclidian norm, or absolute value of a complex number. By using
Euler's representation, we can put this form in exponential form. It is of note that
multiplication by unit complex numbers represent rotations in the plane.

Convex: term used to describe polytopes, such as polygons and polyhedra. It means that
the inside angle is always less than or equal to 180°. A triangle is always convex.
A square or a rectangle is convex, but other quadrilaterals may not be convex.
The term convex is sometimes used for a vertex or edge to say that the inside
angle at the vertex or edge is less than or equal to 180°. An equivalent definition
of convexity is, given a polytope, the intersection of the polytope and any line is
always 0 or 2 points except in degenerate cases. A stricter mathematical definition
is used in the spline chapter. It is a generalization of our simpler definitions.

Concave: any non self-intersecting polytope that is not convex is concave.

Edge: a line segment between 2 vertices.  An edge typically delimitates a polygon. A
square has 4 edges, a cube has 12.

Euler angles: 3 angles used to represent a specific orientation. Can be used to represent
any rotation, but is not very useful in practice for several reasons. First, the order
in which the rotations are applied is important. Second, it is very hard to find the
Euler angles for a given orientation. Third, the angles have very little physical
meaning.

Face: a polygon that delimitates a polyhedron. A face is always planar. A cube has 6
faces. Also, since polygons in 3d have two sides, they are sometimes referred to
as faces.

Mach  banding:  The  human  eye  accentuates  contrasts.  Therefore,  if  two  surfaces  of
slightly different colors lie next to each other, the boundary between the two will
be clearly visible since it's  an area of high contrast (contrast  is,  more or less,
change of color over distance). This happens when we have too few colors to give
a continuous texture to a surface, or when coloring adjacent faces of an object
with uniform but slightly different shades of the same color.

113



Matrix:  a  2  dimensional  array  of  real  numbers.  Can also  be  thought  as  an  array  of
vectors, or a vector of vectors.

Normalizing: making a vector V of unit length, by multiplying it by 1/|V|.

Polygon: a flat, 2d polytope delimited by straight edges and vertices. Examples include
triangles, squares, decagons. We normally prefer all vertices to be distinct, and
that edges do not cross. We don't like it either when the polygon is disconnected
(e.g. has several, distinct parts that are not connected).

Polyhedron: a 3d polytope delimited by planar faces, linear edges and vertices. Examples
include cubes, tetrahedra, icosahedra. As with the polygon, we prefer vertices to
be distinct, edges not to cross, faces not to intersect, and the polyhedron to be
made of one piece as opposed to several disconnected pieces.

Polynomial:  a  mathematical  entity  that  can  be  reduced  to  the  form
a0+a1x+a2x2+a3x3+...+anxn for some n,  ai being a real number and xi a real

variable. Example polynomials include: 3, 2+x, x5+2x+3, x(x+2)(x-3). Examples
of things that are not polynomials: x(x+1)/(x+2), x2+x+sinx.

Polytope: an object in n dimensions defined by linear constraints. Examples in 2d and 3d
are  polygons  and  polyhedra,  respectively.  Polytopes  are  normally  made  of  a
single piece. That is, from any point in a polytope, there is a path (which might be
twisted) that can get you to any other point in the polytope without exiting the
polytope.

Quaternion: similar to a complex number, a quaternion has 1 real and 3 imaginary parts.
It  is  generally  written  as  Q=a+bi+cj+dk,  where  i,  j  and  k  are  orthonormal
imaginary  parts.  These imaginary  components satisfy the following equalities:
ij=-ij=k, jk=-jk=i, ki=-ik=j, i2=j2=k2=ijk=-1. From that, addition, subtraction and
multiplication operations can be defined. The useful thing about quaternions is,
just  multiplication  by  unit  complex  numbers  represent  rotations  in  2d,
multiplication by unit quaternions represent rotations in 3d.

Taylor series: A power series that approximates a function.

Texel: One unit in the texture map, the texture map equivalent of a pixel.

Texture mapping: Historically, this is the "sticking" of a "picture" on top of a polygon. A
bitmap, called texture map, is mapped on a polygon or triangle. This has been
generalized greatly  however.  Now, texture  maps are sometimes replaced by a
function of an x,y,z point in space. Also, the texture need no longer be a simple
picture.  The  texture  can  be  slight  perturbations  to  the  surface  normal  (bump
mapping), a "transparency level" (alpha channel) or a number of other things.

114



Pixel:  The smallest dot displayable by the hardware. Also used to describe one small
square unit in a bitmap.

Vector: strictly speaking, a n-uplet, such as (3,2,5,1). It can be viewed as an arrow in any
number of dimensions, from one point p1 to a point p2. The vector from (x,y,z)
to (a,b,c) is (a-x,b-y,c-z).

Vertex: a point, usually called this way when it is the endpoint of at least one edge. A
square has 4 vertices, a cube has 8.

115



Bibliography

[1] James Foley, Andries van Dam, Steven Feiner, John Hughes, Computer Graphics
Principles and Practice, Addison-Wesley, 1990.

[2] Thomas  H.  Cormen,  Charles  E.  Leiserson,  Ronald  L.  Rivest,  Introduction  to
Algorithms, McGraw-Hill, 1989.

[3] S. D. Conte, Carl de Boor, Elementary Numerical Analysis, McGraw-Hill, 1980.

[4] Ming Chieh Lin,  Efficient Collision Detection for animation and robotics, PhD
Thesis at University of California at Berkeley, 1993.

[5] Barsky, B., Computer Graphics and Geometric Modeling Using Beta-splines, 
Springer-Verlag, New York, 1988.

116


	Zed3D - A compact reference for 3d computer graphics programming
	Contact information
	Registration
	Overview

	Table of Contents
	Vector mathematics
	Introduction
	On notation

	Vector operations
	Exercises
	Answers

	Alcoholism and dependance
	Exercises
	Answers

	On a plane (and of motion sickness)
	Exercises
	Answers

	Orthonormalizing a basis

	Matrix mathematics
	Introduction
	Matrix operations
	Exercise
	Answer

	Matrix representation & linear transformations

	Affine transforms
	Introduction
	Affine transformations
	Exercise

	Affine transform combination and inversion
	Exercise
	Answer


	Applications of linear transformations
	Introduction
	World space, eye space, object space, outer space
	Transformations in the hierarchy (or the French revolution)
	Some pathological matrices

	Perspective
	Introduction
	A simple perspectively incorrect projection
	The perspective transformation
	Theorems
	Other applications
	Constant Z
	Texture mapping equations revisited
	Bla bla

	Reality strikes

	Interpolations and approximations
	Introduction
	Forward differencing
	Approximation function

	Polynomial Splines
	Introduction
	Basic splines
	Parametrized splines
	Uniform splines
	Examples
	Frequently used uniform cubic splines
	Hermite splines
	Bézier splines
	Convex hull
	Bernstein polynomials
	Uniform nonrational B-spline

	Catmull-Rom splines: a non-uniform type of spline

	Rendering
	Introduction
	The point
	Lines
	Polygon drawing

	Visible surface determination
	Introduction
	Back-face culling
	Sorting
	Painter's algorithm and depth sorting
	Z-Buffering
	Binary Space Partitioning

	Lighting models
	Introduction
	Lighting models
	Smooth shading
	Texture mapping & variants on the same theme

	Computer graphics related problems
	Introduction
	Generating edge normals
	Triangulating a polygon
	Computing a plane normal from vertices
	Generating correctly oriented normals for polyhedra
	Polygon clipping against a line or plane

	Quaternions
	Introduction
	Preliminaries
	Conversion between quaternions and matrices
	Orientation interpolation

	Antialiasing
	Introduction
	Filtering
	Pixel accuracy
	Sub-pixel accuracy
	Time antialiasing, a.k.a. motion blur
	Mipmapping
	Uniform Mipmapping
	Nonuniform Mipmapping
	Summed area tables

	Bi-linear interpolation
	Tri-linear interpolation

	Glossary
	Bibliography

